GUIDANCE FOR AUTHORS

Aims and Scope
The Bulletin of Animal Health and Production in Africa publishes articles on original research relevant to animal health and production activities which may lead to the improvement of the livestock industry in Africa and better utilisation of her animal resources. The journal is published quarterly.

Submission of Articles
Two copies of articles should be sent to the Editor, African Union/Inter-african Bureau for Animal Resources, P.O. Box 30786, 00100 Nairobi, Kenya. E-mail: oua-ibar@africanoine.co.ke,

Manuscripts should be in clear concise English or French, typewritten with double spacing and adequate margins. The spelling should be that of The Oxford English Dictionary or Le Petit Robert.

An article submitted for publication implies that its content has not been published elsewhere and that it is subject to editorial revision.

Types of Articles Published in the Bulletin
• Full papers providing accounts of original work.
• Short Communications.
• Review articles invited by the Editor.
• Editorials.
• Letters to the Editor.
• Book Reviews.
• News and announcements.

Format for Articles
The manuscripts should contain the following features:
Title, which should be concise, not more than 15 words long, followed by the author(s) name(s) and institutions to which work should be attributed and address for correspondence, if different.

Summary not exceeding 200 words giving a synopsis of the findings presented and the conclusion(s) reached.

Introduction stating the purpose of the work.

Materials and Methods used.

Results presented concisely.

Discussion of significance.

Acknowledgements.

References numbered consecutively in the order they are first mentioned in the text. Identification of references in the text should be by numbers (in parentheses) and not by authors’ names.

References should take the following form:
1. Journals
Surname and initials of authors(s), year of publication (in parentheses), World List abbreviation of title of periodical (underlined), volume number (arabic numerals), first page number. The title of the articles should not be included.

2. Books
Surname and initials of author(s), year of publication (in parentheses), the exact title (underlined), town of publication, publisher, first page number.

3. Annual Reports
Name of country, year of reference, followed by the name of the department or organisation, first page number.

If the same author is cited more than once, his publications should be arranged in chronological order in the list of references, and if more than one publication is included, the letters “a, b, c” should be added in both the list of references and in the text.

Illustrations
Tables should be limited and number of headings restricted. A massive table is difficult to read even if it can be reproduced. Tables and figures should be numbered consecutively. Table 1 etc., or Fig. 1 etc., respectively, and attached at the end of the text. References to tables and figures in the text should be by number and not to “table below” or “figure below”. Coloured illustrations are reproduced only at the author(s) expense.

Short Communications
A Short Communication implies the article does not justify publication as a convensional paper. Such communication should be restricted to two printed pages or 1,000 words including a maximum of two illustrations. It should therefore contain similar features as a regular paper but summary and separate subheadings are not necessary.

Proofs
One set of proofs will be sent to the author to be checked for printer’s errors and should be returned within three days.

Offprints
25 offprints of each article will be supplied free of charge. Additional offprints may be ordered and paid for at the proof stage. Each extra offprint costs US $2.00.

Subscriptions
The annual subscription fee, including postage (surface mail) and handling is US $50.00. Air mail charges are available upon request.

Back Volumes
Back issues are also obtainable upon request at similar charges.
ORIGINAL ARTICLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Effets de la substitution du tourteau de soja par les graines entières de soja brutes ou grillées dans les rations alimentaires des porcs en milieu paysan.</td>
<td>F. MEFFEJA, T. DONGMO, N. JIFUTIE</td>
<td>229</td>
</tr>
<tr>
<td>5.</td>
<td>Caractéristiques Métriques des Souches Caprines de la Région des Plateaux au Congo Brazzaville KINGA JEAN CLAUDE et MOUANGOU JEAN FULGENCE.</td>
<td></td>
<td>249</td>
</tr>
</tbody>
</table>

SHORT COMMUNICATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Small ruminant production in Buea subdivision, a humid tropical area of the Southwest province of Cameroon.</td>
<td>K.J.N. NDAMUKONG and J.V. MBUH</td>
<td>255</td>
</tr>
<tr>
<td>7.</td>
<td>Effect of increasing duration of water deprivation on feed intake, feed digestibility and body weight gain of Nganda sheep.</td>
<td>N.T. NAJJOKE, R.N. KINUTHIA, C.N. KARUE and D.M. NYARIKI</td>
<td>259</td>
</tr>
<tr>
<td>8.</td>
<td>The effect of varying the roughage to concentrate ratio on the performance of growing rabbits.</td>
<td>J.P. ALAWA and F.T. OYAROLE</td>
<td>263</td>
</tr>
<tr>
<td>9.</td>
<td>Cultural and morphological description of Nocardia isolated from field cases of Bovine skin infections in Nigeria.</td>
<td>M.A. OYEKUNLE and A.I. ADETOSOYE</td>
<td>267</td>
</tr>
<tr>
<td>10.</td>
<td>In-vitro disinfectant sensitivity tests on bacteria isolated from commercial poultry hatcheries in Kenya.</td>
<td>E.S. BIZIMENYERA, P.N. NYAGA and J.O. OLOYA.</td>
<td>271</td>
</tr>
</tbody>
</table>
MEAT PRODUCTION POTENTIAL OF ISSA TYPE CAMELS UNDER TRADITIONAL MANAGEMENT SYSTEM IN EASTERN ETHIOPIA

G.A. MEKONNEN

National Animal Health Research Center (NAHRC), P.O. Box 04, Sebeta, Ethiopia,

POTENTIEL DE PRODUCTION DE VIANDE DES DROMADAIRE ISSA DANS UN SYSTEME D'ELEVAGE TRADITIONNEL DANS L'EST DE L'ETHIOPIE

Résumé

L'étude a été conduite afin d'évaluer le potentiel de production de viande des dromadaires Issa dans l'est de l'Ethiopie. Les dromadaires étaient élevés selon un système traditionnel et ils se nourrissaient de buisson et d'arbustes fourragers. Les données analysées émanaient des dromadaires adultes (> 10 ans) abattus à l'abattoir municipal de Dire Dawa (n = 108). Avant l'abattage, les poids vifs des dromadaires étaient évalués à l'aide de la technique de Boue. Les poids vifs moyens étaient de 444, 8 et 439 kg, tandis que les poids moyens de la carcasse étaient de 327 et 261,5 kg respectivement pour les mâles et les femelles. Les poids vifs ainsi que les poids de la carcasse étaient très différents entre les mâles et les femelles (P < 0,05). La proportion poids vif : poids de la carcasse (PV : PC) calculée pour les mâles et les femelles étaient respectivement de 1 : 0,54 et 1 : 0,48.

Les poids moyens des quartiers avant, des quartiers arrière et de la bosse étaient de 71,6 ± 11,6 ; 60,8 ± 8,8 et 7,5 ± 4,4 kg pour les mâles et 62,8 ± 9,9 ; 54,1 ± 14,9 et 7,4 ± 2,9 kg pour les femelles respectivement. Les différentes découpes pour les mâles étaient supérieures à celles des femelles pour ce qui est du poids ; toutefois, on n'a observé une différence significative (P < 0,05) que pour les poids des quartiers avant, du cou, des muscles du dos (longissimus dordcis, fascia, muscles associés) et des muscles pectoraux et abdominaux.

Abstract

The study was conducted to assess the meat production potential of the Issa type of camel in Eastern Ethiopia, which were raised under traditional management and depended on bushes and shrubs for their diet. Data analyzed were from mature adult camels (>10 years old) slaughtered in the Dire Dawa municipal abattoir (n=108). Before slaughter, the live weights of the camels were estimated using Boue's technique. The average live weights were 444.8 and 439 kg while the average carcass weights were 327 and 261.5 kg respectively for males and females. Both the live and carcass weights differed significantly between males and females (P< 0.05). The live to carcass weight ratio (L: C) calculated for males and females were 1: 0.54 and 1: 0.48 respectively.

The average weights of the forequarters, hindquarters, and the hump were 71.6 ± 11.6, 60.8 ± 8.8 and 7.5 ± 4.4 kg for males and 62.8 ± 9.9, 54.1 ± 14.9 and 7.4 ± 2.9 kg for females respectively. The different cuts for males were superior in weight to those of the females; however, a significant difference (P<0.05) was seen only for the weights of fore quarters, neck, muscles of the back (longissimus dordcis, fascia and associated muscles) and pectoral plus ventral abdominal muscles.

* Corresponding author: E-mail getabmek@yahoo.com
Introduction

The dromedarian camel is distributed in Africa, Middle East and the Indian sub-continent. It is far superior to the two-humped camel in number and over 75% is found in Africa. Ethiopia possesses over 1.06 million camels mainly distributed in the southern, eastern and northeast arid and semi-arid regions of Borana, Ogaden and Afar.

The camel plays a significant role in the socio-economic affairs of the nomadic people in providing meat, milk and draught power. The love, affection and admiration the nomadic people have for the camel is very deep. It is the standard of measurements against which every thing is weighed. Wealth, status and subsistence of the nomadic people are based on it. Camels are also used as bride price and for the sacrifice in nomadic culture. Despite its significant contribution to the livelihood of pastoral societies, the camel is one of the neglected and least exploited animals in Ethiopia. It has traditionally been used as a beast of burden; however, these days its significance in the role of human food security is noted. The available information on productivity of this animal is mainly on milk production indices and reproductive parameters. Very few attempts have been made so far to characterize the meat production potential of camels under traditional management conditions in Ethiopia.

The current study is, therefore, designed to gather data on live and carcass weights and determine the meat production potential under the prevailing traditional management system of Issa type camels in Eastern Ethiopia.

Materials and methods

The study was conducted in and around Dire Dawa (100km radius) in eastern Ethiopia. People of the Issa clan dwelling in the study area owned the study animals. Camel production system in the area is traditional and there is a direct relationship between the cultural habits of the people and camel ownership. The life of the people is generally based on the need to search for grazing.

The common feeds for camels in the area include bushes (mainly Atriplex and Cacia species) and shrubs (Acacia and Kochia species). The frequency of watering is usually every 2-5 days. However, during rainy seasons as bushes and shrubs become very green and contain much water, camels stay up to 20 days without drinking water. Supplementary feeding was not practiced in the area.

During the night camels were kept in kraals fenced by branches of acacia trees. Young suckling calves were kept and nursed in separate kraals beside those of adults. Male camels, except the bulls, were usually employed for transportation purpose and little attention was given in regard to management as compared to female camels.

One hundred and eight camels consisting of 90 males and 18 females slaughtered during the study period at Dire Dawa municipal abattoir brought from the study area were considered. All camels that came to the slaughterhouse were mature adults (over 10 years of age) and their ages were estimated based on their dentition patterns. There were fewer females because camel owners do not have the culture of selling their female camels for slaughter. Live weight was estimated using Boue’s technique.
Wt = 52 (S x T x A) ± 25,
Where S = shoulder height in meter, A = abdominal girth in meter, T = thoracic girth in meter, and Wt = Estimated live weight in kg.

The animals were deprived of water and feed for 12-24 hours before slaughter. Their live weights were determined during ante-mortem inspections using the above formulae. After slaughter the weights of the following carcass parts were taken: fore-quarters, hindquarters, hump, neck, muscles of the back (longissimus dorsi, fascia and associated muscles), pectoral and ventral abdominal muscles, ribs and intercostal muscles were measured using a balance. The sum of wholesale cuts was considered to be the weight of the carcass. The proportion of live to carcass weights (L: C) was calculated by taking the ratio of the two weights.

For the analysis of the result, a computer software program was used to store database and using stat view statistical software, analysis of variance, correlation coefficient (r) and t-test were used as appropriate.

Results

The estimated live weights of mature adult camels were 331-740 kg with an average of 444.8 ±70.76 kg for males and 320-560 kg with an average of 439±72.95 kg for females (Table 1). Sex was found to have a significant effect (P< 0.05) on live weight. The mean shoulder heights, thoracic and abdominal girths of mature adult Issa camels were 1.94±0.09, 2.00±0.11 and 2.20±0.17 m for males and 1.83±0.11, 1.93±0.12 and 2.19±0.21 m for females respectively. Strong positive correlation coefficients (r) were obtained between these parameters and the estimated live weight. The correlation coefficient of shoulder height, thoracic girth

Table 1: The estimated live body weight and different Barymetric measurements of Issa type camels (n=108)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Male (90)</th>
<th>Female (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>SH(m)</td>
<td>1.72-2.20</td>
<td>1.94±0.09</td>
</tr>
<tr>
<td>TG(m)</td>
<td>1.65 – 2.28</td>
<td>2.0 ± 0.11</td>
</tr>
<tr>
<td>AG(m)</td>
<td>1.94 – 2.86</td>
<td>2.2±0.17</td>
</tr>
<tr>
<td>Live Body Wt(kg)</td>
<td>331-740</td>
<td>444.8±70.76</td>
</tr>
</tbody>
</table>

Keys: SH-shoulder height, TG- Thoracic Girth, AG- Abdominal Girth, m- meter
and abdominal girth with live weight were 0.94, 0.96 and 0.95 respectively. The maximum measurements of shoulder height, thoracic and abdominal girth obtained for males and females respectively were 2.20, 2.28 and 2.86 m, and 2.04, 2.22 and 2.60 m (Table 1).

The total meat production of all the 108 camels was 25.15 ton. The carcass weights of Issa camels in the present study were 149-327 and 158-261.5 with an average of 237.3±39.6 and 210.7±31.64 kg respectively for males and females. Few males aged over 20 years and used for long periods showed carcass weights below 237.3±39.6 kg. Significant mean differences were observed (P<0.05) between the carcass weights of males and females.

The heaviest wholesale cuts in both sexes were the forequarters (71.6±11.6kg), followed by the hindquarters (60.8±8.85kg). Male camels were found to dominate in weights of all cuts (Table 2). The live to carcass weight ratio (L: C) were 1:0.4 to 1:0.66 and 1:0.41 to 1:0.59 for males and females respectively.

Discussion

The average live weights of Issa type camels found in the present study are in agreement with those reported in North Kenya, Sudan, Eritrea and Ethiopia for Afar type. However, the mean live weights documented for Ogaden and Borana camels of Ethiopia, Bikaneie, Kutchi and Jaisamer camel of India and Qatar camels of Arabian Peninsula are higher than the present findings suggest.

Though no much difference was noted for the thoracic and abdominal girths, the shoulder height obtained here was greater.

<table>
<thead>
<tr>
<th>Whole sale cuts</th>
<th>Male (90)</th>
<th>Female (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Carcass Wt</td>
<td>149-327</td>
<td>237.3±39.6</td>
</tr>
<tr>
<td>Forequarters</td>
<td>46-96</td>
<td>71.6±11.6</td>
</tr>
<tr>
<td>Hind quarters</td>
<td>40-81</td>
<td>60.8±8.85</td>
</tr>
<tr>
<td>Hump</td>
<td>0-22</td>
<td>7.5±4.43</td>
</tr>
<tr>
<td>Neck M.</td>
<td>14.5-28.5</td>
<td>21.9±3.84</td>
</tr>
<tr>
<td>Pec., Ven. & abd. M.</td>
<td>5-19</td>
<td>18±3.23</td>
</tr>
<tr>
<td>Rib & Inter costal M.</td>
<td>12-39</td>
<td>23.64±5.93</td>
</tr>
</tbody>
</table>

Keys: M - muscle, Long - Longissimus, Asso - Associated, Pec - pectoral, Vent - Ventral, Abd - Abdominal
than that of Afar camels12 and less than that of Ogaden camels4, Borana camels13 and Areho camels11. This could indicate a better quality of Issa camels to hold good amount of meat as compared to other type/breed of camels. The strong positive correlation between barymetric values and live weight suggest that the possibility of estimating live body weight from shoulder height, thoracic or abdominal girth using the linear regression model2.

The weights of carcasses in the current study are comparable to those reported for Iranian camels2, Qatar camels2 and North Kenyan camels8 but higher than reported for Darfur camels in Sudan10.

The direct and indirect effects associated with management practices, nutrition, camel type/breed, age, sex, the general health, sample size, and ecology might have contributed to differences in values obtained by different authors for the live weight, carcass weight, thoracic girth, abdominal girth and shoulder height.

The L:C ratio found in the present study was slightly greater than that reported by Yagil,15. The ratio was closer to one for camels that had lower gut contents. Similar results were also observed for camels that had live weight closer to the average value, 444.8 kg. As the gut became fuller, the ratio was seen to be higher and vise versa. The meat potential of camels that have full gut are, therefore, hardly appreciated using the L:C ratio. Wrong conclusions due to the gut contents can be minimized if camels are left without water and feed for about 24 hrs before slaughter begins. Sex was found to have a significant effect on the L:C ratio (P< 0.05).

An average weight of about 11 kg increase was observed for the forequarters as compared to the hindquarters for males, which could be due to the existence of more massive muscles in the area of the shoulder than the rear part. The difference also holds true for females but the increase was not as high as that of males. This might be due to the less masculine nature of females in the shoulder area. Females were generally found to be less muscular and showed lower weights in all parts as compared to that of males. However, statistically significant differences were seen (P<0.05) only for the forequarters, neck, longissimus dorsi, pectoral and ventral abdominal muscles probably indicating the effects of sex hormones. From this study one can infer that more massive muscles especially in males are distributed around the shoulder, neck, back and sternum regions.

This preliminary work on the live and carcass weights of Issa camels provides good information as to the meat production potential of camels under a traditional management system and can serve as a stand point for further studies. If proper management is practiced, the meat productivity of camels can be improved and can be an important source of animal proteins for humans.

Acknowledgement

The author would like to acknowledge Drs Abebe Wossene, Yilma Jobrie and Mekonnen H/Mariam at Faculty of Veterinary Medicine, Debre Zeit, Ethiopia, for their encouragement and those working in the abattoir for their technical support.

References

Received for publication on 30th June, 2003
COMPOSITION CHIMIQUE ET EFFET ACARICIDE DES HUILES ESSENTIELLES DES FEUILLES DE CHENOPODIUM AMBROSIOIDES ET DE EUCALYPTUS SALIGNA SUR LES TIQUES (RHIPICEPHALUS LUNULATUS) AU CAMEROUN

E. T. PAMO¹, P.H. A. ZOLLO², F. TENDONKENG¹, J. R. KANA¹, A.L. TAPONDJOU³ et M.D. FONGANG².

¹Laboratoire de Nutrition animale, Département des Productions Animales, FASA, Université de Dschang.
P.O. Box.: 222 Dschang, Cameroun.

²Université de Douala, Faculté des Sciences, Département de Biochimie. Douala-Cameroun.

³Laboratoire de Chimie Appliquée et Environnementale (LCAE), Faculté des sciences, Université de Dschang, B.P. 183 Dschang, Cameroun

CHEMICAL COMPOSITION AND ACARICIDE EFFECT OF THE ESSENTIAL OILS OF LEAVES OF CHENOPODIUM AMBROSIOIDES AND EUCALYPTUS SALIGNA ON TICKS (RHIPICEPHALUS LUNULATUS) OF WEST AFRICAN DWARF GOAT IN WEST CAMEROON

Summary

The chemical composition and the acaricide effect of the essential oils from leaves of Chenopodium ambrosioides and Eucalyptus saligna was evaluated on Rhipicephalus lunulatus in the Laboratory of Environmental and Applied Chemistry of University of Dschang in west Cameroon. Five doses of each essential oil (0.000; 0.157; 0.314 and 0.629 µl/cm²) in four replications were used. Each replication was made up of ten ticks in Petri dish with filter paper on the bottom and uniformly impregnated with the product.

The results of this study indicate that essential oils studied are toxic to Rhipicephalus lunulatus ticks. Significant (p<0.05) differences of mortality were observed between treatments. The highest mortality in the control group vary between 0 and 12.5% when the lowest dose (0.079 µl/cm²) registered 60 and 100% respectively for the essential oils of E. saligna and C. ambrosioides. The DL₅₀ obtained at the end of the second day showed that essential oils from the leaves of C. ambrosioides was more toxic (DL₅₀ = 0.053 µl/cm²) than dose of E. saligna (DL₅₀ = 0.120 µl/cm²), indicating a potentially high efficiency of those products on this parasite.

Résumé

La composition chimique et l'effet acaricide des huiles essentielles des feuilles de Chenopodium ambrosioides et Eucalyptus saligna vis-à-vis de Rhipicephalus lunulatus ont été évaluées au Laboratoire de Chimie Appliquée et Environnementale de l'Université de Dschang dans l'Ouest du Cameroun. Cinq doses de chaque huile essentielle (0.000; 0.079; 0.157; 0.314 et 0.629 µl/cm²) en quatre répétitions ont été utilisées. Chaque répétition était constituée de dix tiques dans une boîte de Petri tassée de papier filtre uniformément imprégné du produit.

Des résultats de cet essai, il apparaît que les huiles essentielles étudiées sont dans l'ensemble toxiques pour les tiques (Rhipicephalus lunulatus). Des différences de mortalité significatives (p<0.05) ont été observées entre les traitements. Le seuil de mortalité était compris entre 0 et 12.5% dans le lot témoin quand la plus faible dose (0.079 µl/cm²) enregistrait 60 et 100% respectivement pour les huiles essentielles des feuilles de E. saligna et C. ambrosioides. Les DL₅₀ calculées après deux jours d'exposition montrent que l'huile essentielle des feuilles des C. ambrosioides est plus toxique (DL₅₀ = 0.053 µl/cm²) que celle de E. saligna (DL₅₀ = 0.120µl/cm²), ce qui montre l'efficacité de ces produits sur le parasite.

*Corresponding author: E-Mail: pamo_te@yahoo.fr
Introduction

Les tiques sont des parasites externes hématophages du bétail à l'origine de pertes de performance en raison, non seulement de leur rôle anémiant, mais aussi des maladies qu'elles transmettent, souvent difficiles à diagnostiquer1.

L'utilisation courante des acaricides de synthèse (Arsenic, Dieldrine...) dans la lutte contre ces agents pathogènes nécessite non seulement un investissement considérable pour l'éleveur, mais peut aussi avoir des répercussions sur l'écosystème2. Fort de ce constat, un recours à la phytothérapie par l'usage des huiles essentielles des plantes naturelles semble une solution moins coûteuse avec peu, sinon pas d'impact sur l'environnement. Certaines plantes contiennent en effet dans leurs organes (feuilles, fleurs, fruits...) des substances à propriétés thérapeutiques et antiparasitaires (tanins, flavonoïdes, alcaloïdes...)3,4. Les huiles essentielles de bon nombre d'entre elles sont dotées de toute une gamme de propriétés biologiques (insecticide, bactéricide, fongicide...) et ont déjà fait l'objet d'études phytochimiques et biologiques5.

C'est au vu de tout cela qu'un programme de recherche entre les Laboratoires de Nutrition Animale, de Chimie Appliquée et Environnementale de l'Université de Dschang et le Laboratoire de Phytobiocimie de l'Université de Yaoundé I, portant sur la valorisation des plantes locales efficaces contre les parasites externes des petits ruminants a été initié.

L'objectif essentiel du travail dont les résultats sont rapportés ici est d'évaluer l'effet acaricide des huiles essentielles des feuilles de Chenopodium ambrosioides et d'Eucalyptus saligna sur les tiques Rhipicephalus lunulatus, ectoparasites de la chèvre naine de Guinée à Dschang dans l'Ouest du Cameroun.

Matériel et Méthodes

Matériel végétal
Récolte des plantes

Les feuilles des différentes plantes (Eucalyptus saligna et Chenopodium ambrosioides) ont été récoltées séparément entre mars et avril 2001 au Campus de l'Université de Dschang et ses environs. Elles ont été acheminées au Laboratoire de Phytobiocimie de l'Université de Yaoundé I où elles ont été séchées pendant 3 jours à 26 ± 2°C avant l'extractions des huiles essentielles.

Extraction et analyse chimique des huiles essentielles

L'extraction des huiles essentielles a été effectuée par hydrodistillation à l'aide d'un appareil de type Clevenger. Avant toute extraction, le matériel végétal a été pesé et introduit dans le réacteur. On y a ajouté une quantité d'eau représentant 3 à 5 fois le poids de l'échantillon végétal, puis l'ensemble a été porté à ébullition au moyen d'une calotte chauffante pendant environ 10 heures. Les huiles essentielles obtenues de couleurs jaune claire et jaune pâle respectivement pour les feuilles de Eucalyptus saligna et Chenopodium ambrosioides ont été déshydratées avec du sulfate de sodium anhydre (1g de NaSO₄ pour 5ml d'huile) et conservées à l'abri de la lumière dans un réfrigérateur (4 ± 1°C).

L'analyse chimique des huiles essentielles s'est faite par chromatographie en phase gazeuse (CPG) et par couplage chromatographie en phase gazeuse / spectrométrie de masse (GPG/SM). La CPG a été effectuée à l'aide d'un chromatographe de type CP-338GC doté d'un détecteur à
ionisation de flamme et d'une colonne capillaire en silice de 30 m de longueur et 0,25 mm d'épaisseur. La température de l'injecteur a été fixée à 250°C, celle du four programmée de 50 à 200°C à raison de 50°C /mn. L'azote était utilisé comme gaz vecteur à un débit de 0,8 ml/mn. Un chromatogramme étalon a été réalisé avec les alcanes connus dans les mêmes conditions expérimentales. Le couplage CPG/SM a été réalisé à l'aide d'un appareil de modèle Hewlett Packard (type 5970) équipé d'une colonne capillaire en silice. La température de la colonne était programmée à 220°C. Le gaz vecteur était l'hélium et le spectromètre opérait à 70 électron volte. L'identification des composés a été faite par comparaison de leurs indices de rétention à ceux de la littérature et confirmée par le spectre de masse.

Matériel animal

Récolte des tiques

Les tiques du genre *R. lunulatus* mâles et femelles, couramment rencontrées sur les ruminants dans les hautes terres de l'Ouest du Cameroun, étaient récoltées sans briser leurs rostres sur les chèvres de la Ferme d'Application et de Recherche (FAR) de l'Université de Dschang, dans les différents quartiers de la ville et les villages environnants. Après récolte, les tiques étaient amenées au laboratoire où elles étaient sélectionnées en fonction du poids et de la taille.

Conditionnement des tiques

Quelques spécimens de tiques récoltés sur les chèvres naines de Guinée à la FAR ont été fixés à l'acétale d'éthyle et observés à la loupe pour leur identification. Les clés de détermination de genres d'Ixodides proposées par Walker et al. ont été utilisées et ont conduit à l'espèce *R. lunulatus*.

Dans le but de travailler avec une population homogène, nous avons complètement déparasité 10 chèvres naines de Guinée à la FAR. Trente jours après, nous avons procédé à un détiquage manuel, puis un total de 72 tiques ont été récoltées. A l'aide d'une balance de marque Mettler de capacité 160g et la sensibilité 0,001g, nous avons pesé les tiques et le poids moyen était de 0,5 ± 0,1g. De même, la taille moyenne de ces tiques mesurée à l'aide d'un papier millimétré était de 6,5 ± 0,4 mm. Ce poids et cette taille ont été pris comme référence pour le choix des tiques à utiliser pour les bioessais.

Bioessais

Préparation des doses d'huile essentielle

Après plusieurs tests préliminaires, quatre concentrations étaient préparées en diluant chaque fois dans 1 ml d'un solvant inoffensif (chlooroforme) les volumes respectifs de 5, 10, 20 et 40 ml de produits déshydratés. A l'aide d'une micropipette, chacune des solutions était uniformément répandue sur une rondelle de papier filtre Whatman N° 1 de 9 cm de diamètre déposée dans une boîte de Pétri de 63,62 cm² de surface pour obtenir des concentrations respectives de 0,079; 0,157; 0,314 et 0,629 ml/cm². La cinquième concentration était constituée uniquement de solvant et servait de témoin.

Étude de la toxicité par contact des huiles essentielles

Les tests de toxicité par contact des huiles essentielles ont été réalisés en laboratoire à une température moyenne de 24°C et une humidité relative de 70%. Chaque traitement (concentration) comportait 4 répétitions et chaque répétition était constituée de 10 tiques non sexées.
choisies au hasard et introduites dans une boîte de Pétri qui était ensuite recouverte. Les comptages des tiques mortes se faisaient toutes les 24 heures pendant 8 jours. Le pourcentage de mortalité dans chaque boîte était calculé en utilisant la formule d'Abbott citée par Pamo et al.11:

\[
Mc = \frac{M_o - M_i}{100 - M_i}
\]

Où \(Mc\) = taux de mortalité corrigé;
\(Mo\) = taux de mortalité dans les boîtes traitées ;
\(Mt\) = taux de mortalité dans les boîtes témoins (mortalité naturelle).

Résultats

Les rendements d'extraction des huiles essentielles sur le matériel végétal séché étaient de 0,7% et 0,85% respectivement pour les feuilles de *C. ambrosioides* et *E. saligna*.

Composition chimique des huiles essentielles

Les principaux constituants chimiques de ces huiles essentielles sont représentés dans le tableau 1.

Il ressort de ce tableau que l'huile essentielle de *C. ambrosioides* est particulièrement riche en p-Cymène (65,16%) suivi de Limonène (17,10%) et d'Ascaridole (10,76%), tandis que celle de *E. saligna* est majoritaire en α-Pinène (29,5%), y-Terpinéol (9,61%), p-Cymène (9,09%), Transpinocarvéol (5,84%).

Toxicité pour la tique

Les tableaux 2 et 3 présentent les pourcentages de mortalités cumulées

Tableau 1: Principaux constituants chimiques de l'huile essentielle des feuilles de *C. ambrosioides* et *E. saligna*.

<table>
<thead>
<tr>
<th>Composés</th>
<th>C. ambrosioides</th>
<th>E. saligna</th>
</tr>
</thead>
<tbody>
<tr>
<td>α- Pinène</td>
<td>0,07</td>
<td>29,5</td>
</tr>
<tr>
<td>β-Pinène</td>
<td>-</td>
<td>0,18</td>
</tr>
<tr>
<td>α- Terpinène</td>
<td>-</td>
<td>0,29</td>
</tr>
<tr>
<td>p-Cymène</td>
<td>65,16</td>
<td>9,09</td>
</tr>
<tr>
<td>Limonène</td>
<td>17,10</td>
<td>-</td>
</tr>
<tr>
<td>1,8 - Cinéole (Eucalyptol)</td>
<td>0,71</td>
<td>3,69</td>
</tr>
<tr>
<td>Transpinocarvéol</td>
<td>-</td>
<td>5,84</td>
</tr>
<tr>
<td>Cis-p- Mentha-2,8-diên-1-ol</td>
<td>-</td>
<td>2,72</td>
</tr>
<tr>
<td>Bornéol</td>
<td>0,13</td>
<td>4,80</td>
</tr>
<tr>
<td>y-Terpinéol</td>
<td>0,15</td>
<td>9,61</td>
</tr>
<tr>
<td>Ascaridole</td>
<td>10,76</td>
<td>-</td>
</tr>
<tr>
<td>Carnacrol</td>
<td>2,10</td>
<td>-</td>
</tr>
<tr>
<td>α- Humulène</td>
<td>-</td>
<td>4,33</td>
</tr>
<tr>
<td>Spathulenol</td>
<td>-</td>
<td>3,01</td>
</tr>
<tr>
<td>Oxyde l'α - Humulméne</td>
<td>-</td>
<td>1,38</td>
</tr>
<tr>
<td>T-Cadinol</td>
<td>-</td>
<td>2,60</td>
</tr>
</tbody>
</table>
corrigées par rapport au témoin chez *R. lunulatus* avec leurs écarts-types aux différentes concentrations (en µl/cm²) des huiles essentielles de *C. ambrosioides* et *E. saligna* au cours du temps.

Il ressort de ces tableaux que le pourcentage de mortalités cumulées des tiques croît avec la concentration des huiles essentielles testées au cours du temps. La mortalité maximale a été atteinte avec la plus forte concentration le deuxième jour pour l’huile essentielle de *C. ambrosioides* (Tableau 2) et le septième pour celle de *E. saligna* (Tableau 3). Le seuil de mortalité dans le lot témoin était de 12,5% au moment où la plus faible dose entraînait 60% pour l’huile essentielle de *E. saligna*. Par contre, on n’observait aucune mortalité chez les témoins à l’instant où la plus faible dose (0,079 µl/cm²) avait totalement exterminé sa population de tiques avec l’huile essentielle de *C. ambrosioides*. Les huiles essentielles testées sont donc toxiques pour *R. lunulatus*.

Cependant, l’huile de *C. ambrosioides* est plus toxique que celle de *E. saligna* (Fig. 1).

Les résultats de l’analyse de la variance des données de mortalité journalière cumulées en fonction de la concentration des huiles essentielles (Tableau 2 et 3) ont permis d’observer des différences significatives (p<0,05) entre les traitements.

La transformation des pourcentages de mortalités après deux jours d’exposition en probits (Tableau 4) et la régression de ces données en fonction du logarithme de la concentration des huiles essentielles a permis d’obtenir les équations suivantes:

\[
Y = 1,349X + 5,243 \quad (R^2 = 0,96) \quad E. saligna
\]

\[
Y = 4,212X + 9,370 \quad (R^2 = 0,98) \quad C. ambrosioides
\]

Les DL_{50} déterminées à partir de ces équations étaient de 0,053 et 0,120 µl/cm² respectivement pour les huiles essentielles de *C. ambrosioides* et *E. saligna*.

Tableau 2: Effet de l’huile essentielle des feuilles de *C. ambrosioides* sur *R. lunulatus*.

<table>
<thead>
<tr>
<th>Durée d’exposition (jour)</th>
<th>Concentration (en µl/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>0,0±0,0^a</td>
</tr>
<tr>
<td>2</td>
<td>0,0±0,0^a</td>
</tr>
<tr>
<td>3</td>
<td>0,0±0,0^a</td>
</tr>
<tr>
<td>4</td>
<td>0,0±0,0^a</td>
</tr>
<tr>
<td>5</td>
<td>0,0±0,0^a</td>
</tr>
<tr>
<td>6</td>
<td>7,5±0,5^a</td>
</tr>
<tr>
<td>7</td>
<td>10,0±0,5^a</td>
</tr>
<tr>
<td>8</td>
<td>12,5±0,5^a</td>
</tr>
</tbody>
</table>

a,b,c,d,e : les pourcentages de mortalités (Mc ± e.t) dans chaque ligne affectés d’une même lettre ne sont pas significativement (p>0,05) différents. Mc = mortalité corrigée; e.t = écart-type.
Tableau 3: Effet de l'huile essentielle des feuilles de *E. saligna* sur *R. lunulatus*.

<table>
<thead>
<tr>
<th>Durée d'exposition (jour)</th>
<th>Concentration (en μl/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>1</td>
<td>0,0±0,0°</td>
</tr>
<tr>
<td>2</td>
<td>0,0±0,0°</td>
</tr>
<tr>
<td>3</td>
<td>0,0±0,0°</td>
</tr>
<tr>
<td>4</td>
<td>0,0±0,0°</td>
</tr>
<tr>
<td>5</td>
<td>0,0±0,0°</td>
</tr>
<tr>
<td>6</td>
<td>5,0±0,6°</td>
</tr>
<tr>
<td>7</td>
<td>7,5±0,5°</td>
</tr>
<tr>
<td>8</td>
<td>12,5±0,5°</td>
</tr>
</tbody>
</table>

a,b,c,d,e : les pourcentages de mortalités (M ± e.t) dans chaque ligne affectés d'une même lettre ne sont pas significativement (p>0,05) différents. Mc = mortalité corrigée; e.t = écart-type.

Tableau 4: Logarithmes des doses de l'huile essentielle des feuilles de *C. ambrosioides* et *E. saligna* et probits des pourcentages de mortalités de *R. lunulatus* après deux jours d'exposition.

<table>
<thead>
<tr>
<th>Doses (μl/cm²)</th>
<th>Log (Dose)</th>
<th>Mortalité (%)</th>
<th>Probit (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E. saligna</td>
<td>C. ambrosioides</td>
</tr>
<tr>
<td>0,079</td>
<td>-1,102</td>
<td>12,50</td>
<td>42,50</td>
</tr>
<tr>
<td>0,157</td>
<td>-0,804</td>
<td>17,50</td>
<td>85,50</td>
</tr>
<tr>
<td>0,314</td>
<td>-0,503</td>
<td>30,00</td>
<td>97,50</td>
</tr>
<tr>
<td>0,629</td>
<td>-0,201</td>
<td>52,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>
Composition chimique et effet acaricide des huiles essentielles des feuilles de *Chenopodium ambrosioides* et de *Eucalyptus saligna* sur les tiques (*Rhipicephalus lunoletus*) au Cameroun.

Figure 1: Evolution des pourcentages des mortalités de *R. lunoletus* en fonction de la plus faible dose de l’huile essentielle des feuilles de *C. ambrosioides* (0,079 ml /cm²) et de la plus forte dose de l’huile essentielle des feuilles de *E. saligna* (0,629 ml /cm²).

Discussion

D’après les rendements d’extraction, les feuilles de *E. saligna* sont plus riches en huile essentielle (0,85%) que celles de *C. ambrosioides* (0,7%). L’analyse chimique de ces huiles essentielles a montré que le composé majoritaire dans l’huile de *E. saligna* était l’a-Pinène (29,5%) contre le p-Cymène (65,16%) dans celle de *C. ambrosioides*.

La toxicité de l’huile essentielle de *E. saligna* pourrait en grande partie être attribuée à l’a -Pinène dont l’activité insecticide s’est déjà révélée intéressante contre *Tribolium confusum*⁶. Des effets similaires ont été observés sur d’autres parasites des denrées alimentaires de stock avec le 1,8 -Cinéole, Y-Terpinéol et Bornéol⁴,⁶,¹⁰,¹¹ que l’on retrouve toujours dans l’huile de *E. saligna*. Pour ce qui est du 1,8-Cinéole, les travaux antérieurs rapportent que ce constituant chimique peut inhiber le développement du parasite tant au stade des œufs, des larves que des nymphes⁵.

En ce qui concerne l’huile essentielle de *C. ambrosioides*, son extrême toxicité proviendrait particulièrement de l’Ascaridole. Ce composé reconnu pour son pouvoir antihelmintique agit spécifiquement sur le parasite en provoquant une irritation locale au niveau du tube digestif et un effet dépressif sur le système circulatoire⁶. Ceci peut entraîner des désordres métaboliques ayant des répercussions sur le processus de développement et de reproduction du parasite. Toutefois, on ne saurait restreindre la toxicité de cette huile uniquement à l’Ascaridole qui n’est d’ailleurs pas le principal constituant (10,76%), auquel cas une influence des autres constituants majoritaires comme le p-Cymène (65,16%) et le
limonène (17,10%) est envisageable. Dans cette perspective, il est difficile de penser que l'activité acaricide des huiles essentielles étudiées se limite uniquement à certains de leurs constituant. Il est possible que leur activité soit due à l'action synergique de plusieurs de leurs constituants.

Conclusion

De ce travail, il apparaît que les huiles essentielles testées ont des effets toxiques vis-à-vis de *R. lunulatus*. L'huile essentielle des feuilles de *C. ambrosioides* s'est montrée plus toxique que celle de *E. saligna*. Le pourcentage des mortalités cumulées observées croît avec la concentration des huiles essentielles au cours du temps. Les DL₅₀ observées après deux jours d'exposition étaient de 0,053 µl/cm² pour l'huile de *C. ambrosioides* et 0,120 µl/cm² pour celle de *E. saligna*.

Les essais en milieu réel restent à effectuer pour évaluer l'efficacité pratique des produits. Il serait aussi souhaitable de fractionner les produits afin d'évaluer le degré de toxicité de chacun de leurs constituants pour des études individuelles de toxicité, y compris l'étude de la toxicité ou des effets secondaires sur les mammifères. De même, les tests d'activité sur les arthropodes permettraient de généraliser l'utilisation des produits dans la mesure où la sensibilité aux acaricides varie suivant les espèces. Par ailleurs, la recherche de la dose d'application, la rémanence sur le pelage, le coût économique, la comparaison avec les molécules chimiques et le mode de conditionnement des huiles essentielles sont indispensables pour les rendre accessibles aux plus démunis que sont les petits éleveurs.

Remerciements

Les auteurs remercient l'Agence Internationale de l'Energie Atomique (AIEA), le Ministère de l'Enseignement Supérieur et l'Université de Dschang pour leur soutien financier à la réalisation de cette étude.

Références bibliographiques

Reçu pour publication le 17 mai 2004
EFFETS DE LA SUBSTITUTION DU TOURTEAU DE SOJA PAR LES GRAINES ENTIERES DE SOJA BRUTES OU GRILLEES DANS LES RATIONS ALIMENTAIRES DES PORCS EN MILIEU PAYSAN

F.MEFFEJA*, T.DONGMO1, N.JIFUTIE2

1Centre Régional de Recherche Agricole pour le Développement, Nkolbisson s/c B.P. 7070 Yaoundé. 2Département de Biologie et de Physiologie Animale, Université de Yaoundé I.

EFFECT OF REPLACEMENT OF SOYBEAN MEAL BY RAW OR ROASTED WHOLE SOYBEANS IN PIG RATIONS ON FARM.

Summary

Twenty male and twenty female pigs, averaging initial body weight of 20.4 and 29.3kg were used on farm to evaluate the effects of replacing soybean meal with raw or roasted soybeans in the diets on the performances and blood characteristics of pigs. The pigs were fed with rations in which the quantity of protein provided by soybean meal (control diet) was replaced by 25, 50, 75, 100% of that provided by raw (experiment 1) or roasted (experiment 2) soybeans during 47 and 33 experimental periods. Results (experiment 1) showed significant differences (p<0,05) on daily feed intake at 50% and at 75% replacement on daily weight gain, feed conversion ratio, mean final weight and feed cost to produce one kg live weight. No significant (p>0,05) difference (experiment 2) was observed on any parameters up to 75% replacement.

No blood parameters measured were significantly affected by raw or roasted dietary soybean levels. However, there was an increase rate of lymphocytes, monocytes and a reduction rate of granulocytes in blood formulae, compared to the normal characteristics of pig blood. The synthesis of the results show that an optimum level of 12.40% raw and 100% roasted soybeans in substitution of soybean meal can be economically used on farm in growing pig rations.

Résumé

Vingt porcs mâles et vingt porcs femelles, aux poids moyens initiaux de 20,4 et 29,3kg ont été utilisés en milieu paysan pour déterminer les effets de l'utilisation dans les rations alimentaires des graines de soja brutes ou grillées substituées au tourteau de soja sur les performances et les paramètres hématologiques des porcs. Les animaux ont reçu des rations dans lesquelles la quantité de protéines fournie par le tourteau de soja (ration témoin) a été remplacée par 25, 50, 75 et 100% de celle fournie par le soja brut (expérience n°1) ou le soja grillé (expérience n°2) pendant deux périodes expérimentales de 47 et 33 jours. Les résultats obtenus (expérience n°1) ont montré des différences significatives (p<0,05) sur la consommation alimentaire à 50% et à 75% de substitution sur le gain de poids moyen quotidien, l'indice de consommation, le poids moyen final et le coût alimentaire de production du kg de gain de poids. Dans l'expérience n°2, aucune différence significative (p>0,05) quel que soit le niveau de substitution jusqu'à 75% n'a été observée.

Aucun paramètre sanguin analysé n'a été affecté ni par le niveau du soja brut, ni par le niveau du soja grillé. Toutefois, une augmentation des taux de lymphocytes et de monocytes et une réduction des taux de granulocytes de la formule leucocytaire, comparés aux normes hématologiques du porc, ont été observées sur tous les traitements. La synthèse des résultats montre qu'à plus de 12,4% d'incorporation de soja brut dans les rations alimentaires des porcs en croissance, les performances sont significativement faibles et qu'une substitution de 100% du tourteau de soja par le soja grillé est économiquement rentable dans l'alimentation des porcs en milieu paysan.

* Corresponding author: e-mail: meffeja@yahoo.fr
Introduction

Le tourteau de soja constitue la principale source de protéine utilisée de par le monde dans l'alimentation des animaux monogastriques. Cependant, son coût élevé demeure la contrainte majeure à l'amélioration de la productivité de ces animaux dans les pays en voie de développement. On estime à environ 7000t la quantité de tourteau de soja débarquée chaque année au Port de Douala, pour une perte en devise nationale de 3,5 milliards de FCFA. D'autre part, les graines entières de soja représentent une source potentielle alternative de protéines et d'énergie pour la nutrition des porcs et des volailles dans les pays où les moyens technologiques d'extraction d'huile ne sont pas encore disponibles ou sont très coûteux pour les petits producteurs. Au Cameroun, la culture du soja est en progression depuis 19782 et les graines entières sont actuellement vulgarisées par les ONG et les organismes de développement comme source de protéine dans l'alimentation du bétail. Toutefois, la présence dans ces graines des substances antinutritionnelles telles que les antitrypsines, les phytohémagglutinines, les tannins et les saponines etc..., demeure un facteur limitant quant à leur utilisation. Ces substances retardent la croissance en diminuant la digestibilité des protéines et de l'énergie, en accentuant la carence en acides aminés soufrés et en provoquant l'inflammation des cellules épithéliales de l'intestin3.

Les travaux publiés dans la littérature sur l'utilisation des graines de soja brutes chez le porc sont rares et le peu d'informations disponibles actuellement sont contradictoires. Combs et al.4 ont rapporté un gain pondéral quotidien faible de 190g et un indice de consommation de 4,38 chez des porcs en croissance recevant une ration à base de graines brutes de soja tandis qu'une croissance pondérale élevée de 575g et un indice de consommation de 4,32 ont été enregistrés par Ochetim et Nicholson5 sur des porcs croisés Landrace x Large White alimentés avec du soja brut. Par ailleurs, l'utilisation d'autres graines brutes de légumineuses (Phaseolus vulgaris) chez les rats, réduit la digestibilité des protéines, l'absorption du glucose, la teneur en acides aminés soufrés, augmente le volume du pancréas et du foie et affecte leur mécanisme de défense6. Ces mêmes auteurs ont observé par contre chez le porc une augmentation du foie, du nombre total de leucocytes, des monocytes, des neutrophiles et une diminution du pancréas et des lymphocytes.

Des traitements technologiques appliqués sur les graines de soja7,8 ont montré que l'activité de la plupart des substances antinutritionnelles dans les graines de soja est détruite par la chaleur humide (cuisson) et que la chaleur sèche n'affecte pas leur valeur nutritive initiale. Dès lors, des travaux publiés sur l'utilisation des graines de soja traitées chez les monogastriques sont en majorité relatifs au traitement par la chaleur humide4, 9, 10, 11.

Les différentes méthodes de traitement thermique ne pouvant être pratiquées dans certaines régions à cause de la rareté du bois de chauffe, l'objectif du présent travail est de déterminer le niveau optimum d'incorporation des graines de soja brutes ou grillées dans l'alimentation des porcs en croissance et d'évaluer leur influence sur quelques paramètres hématologiques.

Matériel et méthodes.

Les données présentées dans cette étude proviennent de deux essais réalisés en milieu paysan dans la région de Yaoundé de décembre à mars 2002 en période de...
forte chaleur (28-35°C). Cette région forestière du sud du Cameroun est caractérisée par une température moyenne annuelle de 25°C, une pluviométrie bimodale variant entre 1500 et 2500 mm et une hygrométrie comprise entre 50 et 80% en saison sèche et 70 à 90% en saison des pluies.

Au total, 40 porcs hybrides Large White x Landrace ont été utilisés. Dans l'expérience n° 1, vingt porcelets mâles, de poids moyen initial 20,4kg ont été répartis au hasard dans 10 loges expérimentales, de dimension 3m x 2,5m, construites en planches sur pilotis et correspondant à cinq rations alimentaires de deux répétitions chacune. Chaque loge était munie d'un abreuvoir et d'une mangeoire en matériau de récupération, constitué d'une jante de voiture boursée de ciment.

Cinq rations expérimentales isoenergétiques et isoprotéiques ont été formulées à base du tourteau de soja et des graines de soja brutes, de manière à substituer la quantité de protéines fournie par le tourteau de soja dans la ration témoin (sans soja brut) par 25, 50, 75 et 100% de la quantité des protéines fournie par les graines de soja brutes (Tableau 1). Les porcelets ont reçu au début de l'expérience un traitement antiparasitaire à base de levamisol (Levajet) et une vaccination contre le Rouget (Rouvax). L'aliment et l'eau ont été distribués une fois par jour à 8 heures et les refus enregistrés le jour suivant, pendant une période expérimentale de 47 jours.

Dans l'expérience n° 2, vingt porcs femelles, croisés Large white x Landrace, de poids moyen initial 29,3kg ont été répartis dans les mêmes loges expérimentales à la fin de l'expérience n° 1. Elles ont été soumises à cinq rations alimentaires dans lesquelles la quantité des protéines fournie par le tourteau de soja dans la ration contrôle (sans soja grillé) a été substituée par les protéines des graines de soja grillé pendant une période expérimentale de 33 jours.

Les graines de soja ont été grillées au feu de bois, dans une marmite par tranche de 10kg pendant 20 à 25 min jusqu'à l'obtention d'une couleur brunâtre des graines, semblable à celle des arachides grillées, dont la pellicule se détache facilement entre les doigts. Les graines de soja brutes et grillées ont été ensuite analysées (Tableau 2) au laboratoire de zootechnie de la faculté des sciences agronomiques de l'Université de Dschang suivant les méthodes de l'AOAC et de Goering et van Soest. Le coût de traitement des graines a été évalué à partir du coût de la grillade et du bois. Le coût alimentaire de production d'un kg de poids vif a été obtenu en multipliant le coût de la ration par l'indice de consommation.

A la fin de chaque expérience, des échantillons de sang ont été prélevés sur les porcs au niveau de la veine cave dans chaque traitement, afin de déterminer le taux d'hématócrite, la concentration en hémoglobine, le nombre d'érythrocytes, de leucocytes, de thrombocytes et la formule leucocytaire (% lymphocytes, % monocytes, % granulocytes). Pour la détermination simple de l'hématócrite, deux tubes capillaires micro hématócrites ont été immédiatement remplis avec du sang collecté dans des tubes médicaux en plastiques de 5 ml contenant de l'EDTA (Éthylène diamine tétra acétate de soude). Ces tubes micro hématócrites ont été ensuite centrifugés à 3000 t/min pendant 15 min dans la centrifugeuse de Hawsley et le taux d'hématócrite lu à l'aide de l'appareil de lecture micro hématócrite de Hawsley (England). Pour l'analyse électronique des échantillons, les paramètres hématologiques ont été
Tableau 1: Composition centésimale des rations expérimentales.

<table>
<thead>
<tr>
<th>Ingrédients</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maïs</td>
<td>40,00</td>
<td>38,50</td>
<td>37,00</td>
<td>34,50</td>
<td>32,50</td>
</tr>
<tr>
<td>Tourneau de soja</td>
<td>20,00</td>
<td>15,00</td>
<td>10,00</td>
<td>5,00</td>
<td>—</td>
</tr>
<tr>
<td>Soja grillé</td>
<td>—</td>
<td>6,20</td>
<td>12,40</td>
<td>18,60</td>
<td>24,80</td>
</tr>
<tr>
<td>Farine de sang</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Tourneau de palmiste</td>
<td>18,00</td>
<td>18,30</td>
<td>18,60</td>
<td>19,40</td>
<td>20,20</td>
</tr>
<tr>
<td>Son de blé</td>
<td>16,00</td>
<td>16,00</td>
<td>16,00</td>
<td>16,50</td>
<td>16,50</td>
</tr>
<tr>
<td>Poudre d’os</td>
<td>3,50</td>
<td>3,50</td>
<td>3,50</td>
<td>3,50</td>
<td>3,50</td>
</tr>
<tr>
<td>Sel</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Composition chimique calculée

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie digestible (Kcal/Kg)</td>
<td>3024,00</td>
<td>3066,50</td>
<td>3109,00</td>
<td>3144,70</td>
<td>3182,50</td>
</tr>
<tr>
<td>Protéines brutes %</td>
<td>20,26</td>
<td>20,19</td>
<td>20,12</td>
<td>20,12</td>
<td>20,09</td>
</tr>
<tr>
<td>Lysine %</td>
<td>1,05</td>
<td>1,05</td>
<td>1,05</td>
<td>1,05</td>
<td>1,05</td>
</tr>
<tr>
<td>Méthionine + Cystine %</td>
<td>0,68</td>
<td>0,68</td>
<td>0,68</td>
<td>0,69</td>
<td>0,69</td>
</tr>
<tr>
<td>Celluloses brutes %</td>
<td>5,86</td>
<td>6,06</td>
<td>6,28</td>
<td>6,59</td>
<td>6,87</td>
</tr>
<tr>
<td>Matières grasses %</td>
<td>3,13</td>
<td>4,10</td>
<td>5,05</td>
<td>5,98</td>
<td>6,95</td>
</tr>
<tr>
<td>Calcium %</td>
<td>1,21</td>
<td>1,21</td>
<td>1,22</td>
<td>1,22</td>
<td>1,22</td>
</tr>
<tr>
<td>Phosphore total %</td>
<td>1,00</td>
<td>0,99</td>
<td>0,99</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Coût de la ration (FCFA/Kg)

- A base de soja brut 180,6 174,0 167,5 160,1 153,1
- A base de soja grillé 180,6 175,3 169,9 163,9 158,1

Tableau 2: Caractéristiques chimiques analysées et coût du traitement thermique des graines de soja.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Soja brut</th>
<th>Soja grillé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière sèche (% du brut)</td>
<td>89,8</td>
<td>96,15</td>
</tr>
<tr>
<td>Protéines brutes (% MS)</td>
<td>40,36</td>
<td>38,16</td>
</tr>
<tr>
<td>Matières grasses (% MS)</td>
<td>11,8</td>
<td>16,49</td>
</tr>
<tr>
<td>Cendres (% MS)</td>
<td>7,29</td>
<td>6,69</td>
</tr>
<tr>
<td>Phosphore (% MS)</td>
<td>0,54</td>
<td>0,57</td>
</tr>
<tr>
<td>NDF (% MS)</td>
<td>40,69</td>
<td>58,19</td>
</tr>
<tr>
<td>ADF (% MS)</td>
<td>27,13</td>
<td>30,32</td>
</tr>
<tr>
<td>Cellulose brute (% MS)</td>
<td>3,76</td>
<td>2,29</td>
</tr>
<tr>
<td>Antitrypsine (mgN/g/min)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Uréase (mgN/g/min)</td>
<td>0,36</td>
<td>0,17</td>
</tr>
<tr>
<td>Coût de traitement (FCFA/Kg)</td>
<td>-</td>
<td>20</td>
</tr>
</tbody>
</table>
Tableau 3 : Effets de la substitution des protéines du tourteau de soja par celles des graines de soja brutes sur les performances de croissance des jeunes porcs mâles.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Niveau de substitution (%)</th>
<th>ETM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Nombre d’animaux</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Poids initial moyen (Kg)</td>
<td>20,00a</td>
<td>20,75a</td>
</tr>
<tr>
<td>Consommation alimentaire (g/j)</td>
<td>1064,0a</td>
<td>1070,9a</td>
</tr>
<tr>
<td>Gain moyen quotidien (g/j)</td>
<td>351,2a</td>
<td>349,5a</td>
</tr>
<tr>
<td>Indice de consommation</td>
<td>3,03a</td>
<td>3,06a</td>
</tr>
<tr>
<td>Poids final moyen (Kg)</td>
<td>36,5a</td>
<td>37,2a</td>
</tr>
<tr>
<td>Fréquence des diarrhées (%)</td>
<td>5,88</td>
<td>11,76</td>
</tr>
<tr>
<td>Coût alimentaire / Kg de gain de poids (FCFA)</td>
<td>547,2a</td>
<td>532,4a</td>
</tr>
</tbody>
</table>

a,b,c : les moyennes surmontées de la même lettre ne sont pas significativement différentes (p > 0,05).
NS : Non significatif
*: p < 0,05
**: p < 0,01
(1) : (Nombre de jours de diarrhées par traitement / nombre total de jours de diarrhées) x 100
ETM : Ecart-type de la moyenne.

déterminés au « Coulter counter » de marque ABX micros après trois jours de conservation à 4°C au frigidaire.

Les performances des animaux (consommation alimentaire moyenne/jour, gain de poids moyen quotidien et indice de consommation), les paramètres sanguins (hémocrit, hémoglobine, érythrocytes, leucocytes, thrombocytes et formule leucocytaire) et le coût alimentaire /kg de gain de poids ont été mesurés et enregistrés. Les résultats obtenus sur les performances des animaux et le coût alimentaire de production du kg de poids vif ont été soumis à l’analyse de la variance et la séparation des moyennes a été effectuée par la méthode de Newman et Keuls. Les paramètres hématologiques ont été comparés aux caractéristiques physiologiques normales du sang des porcs.

Résultats

Les caractéristiques chimiques analysées des graines de soja brutes et grillées (tableau 2) ont présenté des valeurs élevées des constituants pariétaux et une faible teneur en matières grasses par rapport aux valeurs classiques. Ces résultats seraient dus à un artefact du dosage, en particulier pour la teneur en NDF du soja grillé. Les facteurs antitrypsines et l’uréase sont passés respectivement de 10 et de 0,36 mgN/g de matières azotées dans le soja brut à 5 et 0,17 mgN/g dans le soja grillé.

Expérience n°1. Les performances zootechniques (tableau 3) des animaux recevant des niveaux croissants de
quantités de protéines du soja brut dans la ration ont montré une diminution significative de la consommation alimentaire (p<0,05) entre les rations à 0, 25%, et celles contenant 50,75 et 100% des protéines du soja brut. Cette diminution de la consommation alimentaire s’est traduite par une diminution significative (p<0,05) du gain pondéral moyen quotidien entre les rations à 0, 25, 50 et 75, 100% de substitution. L’efficacité alimentaire a diminué significativement (p<0,05) entre les rations contenant 0, 25, 50% et celle contenant 75%, elle-même significativement différente de la ration contenant 100% des protéines du soja brut. Il en a été de même du poids moyen final. Il a été observé une tendance au gaspillage alimentaire, une moindre consommation d’eau et un effet laxatif croissant de la ration témoin par rapport à celle contenant 100% des protéines du soja brut en substitution à celles du touréau.

Le coût alimentaire de production d’un kg de poids vif est passé de 547,2 FCFA dans la ration témoin à 510,9 FCFA dans la ration contenant 50% de protéines du soja brut, pour ensuite accroître significativement jusqu’à atteindre 760,9 FCFA dans la ration à 100% de protéines du soja brut.

Les paramètres hématologiques obtenus (tableau 4) n’ont présenté aucune tendance particulière avec le niveau croissant du soja brut dans la ration.

Expérience n°2. Les performances zootechniques (tableau 5) des animaux n’ont présenté aucune différence significative (p>0,05) par rapport à la consommation alimentaire moyenne quotidienne, à l’indice de consommation et au poids moyen final selon le niveau d’incorporation des graines de soja grillées dans la ration. Toutefois une diminution significative (p<0,05) du gain pondéral quotidien a été observée entre la ration contenant 75% et 100% de protéines

Tableau 4: Effets de la substitution des protéines du touréau de soja par celles des graines de soja brutes sur les paramètres hématologiques des jeunes porcs mâles.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Niveau de substitution (%)</th>
<th>Normes Hématologiques Shirvel 16 Karl Otto 17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Nombre d’animaux</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Leucocytes x 10^9/mm³</td>
<td>21,3±0,2</td>
<td>11,0±1,2</td>
</tr>
<tr>
<td>Erythrocytes x 10^6 / mm³</td>
<td>7,1±0,7</td>
<td>6,5±0,4</td>
</tr>
<tr>
<td>Hémoglobine g/dl</td>
<td>12,2±3,1</td>
<td>11,4±4,2</td>
</tr>
<tr>
<td>Hématocrite %</td>
<td>41,3±0,5</td>
<td>37,7±0,3</td>
</tr>
<tr>
<td>Thrombocytes x 10^3 x mm³</td>
<td>670,0±88,6</td>
<td>325,0±110,4</td>
</tr>
<tr>
<td>Formule leucocytaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytes %</td>
<td>61,1±3,9</td>
<td>66,8±8,9</td>
</tr>
<tr>
<td>Monocytes %</td>
<td>18,2±3,0</td>
<td>15,9±4,6</td>
</tr>
<tr>
<td>Granulocytes %</td>
<td>18,7±5,7</td>
<td>17,4±5,6</td>
</tr>
</tbody>
</table>

X±ET = Moyenne ± Ecart - Type
Tableau 5: Effets de la substitution des protéines du tourteau de soja par celles des graines de soja grillées sur les performances des porcs femelles à l’engraissement.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Niveau de substitution (%)</th>
<th>ETM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Nombre d’animaux</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Poids initial moyen (Kg)</td>
<td>29,4<sup>a</sup></td>
<td>29,1<sup>a</sup></td>
</tr>
<tr>
<td>Consommation alimentaire (g/j)</td>
<td>1540,4<sup>a</sup></td>
<td>1530,3<sup>a</sup></td>
</tr>
<tr>
<td>Gain moyen quotidien (g/j)</td>
<td>515,2<sup>a</sup></td>
<td>498,7<sup>a</sup></td>
</tr>
<tr>
<td>Indice de consommation</td>
<td>2,99<sup>a</sup></td>
<td>3,06<sup>a</sup></td>
</tr>
<tr>
<td>Poids final moyen (Kg)</td>
<td>46,5<sup>a</sup></td>
<td>45,5<sup>a</sup></td>
</tr>
<tr>
<td>Coût alimentaire / Kg de gain</td>
<td>536,0<sup>a</sup></td>
<td>536,4<sup>a</sup></td>
</tr>
<tr>
<td>de poids (FCFA)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a,b : les moyennes surmontées de la même lettre ne sont pas significativement différentes (p > 0,05).
ETM : Ecart - type de la moyenne.

Tableau 6: Effets de la substitution des protéines du tourteau de soja par celles des graines de soja grillées sur les paramètres hématologiques des jeunes porcs femelles.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Niveau de substitution (%)</th>
<th>Normes Hématologiques Shirvel<sup>16</sup> Karl Otto<sup>17</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Nombre d’animaux</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Leucocytes x 10<sup>3</sup>/mm<sup>3</sup></td>
<td>16,6±3,3</td>
<td>17,15±0,05</td>
</tr>
<tr>
<td>Erythrocytes x 10<sup>8</sup> / mm<sup>3</sup></td>
<td>6,9±0,6</td>
<td>6,9±0,1</td>
</tr>
<tr>
<td>Hémoglobine g/dl</td>
<td>11,4±1,15</td>
<td>11,9±0,1</td>
</tr>
<tr>
<td>Hématocrite %</td>
<td>40,8±3,95</td>
<td>40,9±0,5</td>
</tr>
<tr>
<td>Thrombocytes x 10<sup>3</sup> x mm<sup>3</sup></td>
<td>194,5±92,50</td>
<td>241,5±3,5</td>
</tr>
<tr>
<td>Formule leucocytaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphocytes %</td>
<td>74,6±3,9</td>
<td>72,8±8,9</td>
</tr>
<tr>
<td>Monocytes %</td>
<td>10,3±3,0</td>
<td>15,7±24,6</td>
</tr>
<tr>
<td>Granulocytes %</td>
<td>15,1±5,7</td>
<td>11,4±5,6</td>
</tr>
</tbody>
</table>

X±ET = Moyenne ± Ecart - Type
de soja grillé. Aucun cas de diarrhée, ni de gaspillage d’aliment n’a été enregistré comme observé dans l’expérience n°1. Le coût alimentaire de production d’un kg de poids vif n’a montré aucune différence significative entre les traitements quel que soit le niveau du soja grillé dans la ration. Toutefois, une baisse relative de 5,89% a été enregistrée entre la ration témoin et celle contenant 100% de protéines du soja grillé. Aucune tendance particulière n’a été observée sur l’évolution des paramètres hématologiques (tableau 6) avec le niveau croissant des graines de soja grillées dans la ration. Toutefois, l’énormation leucocytaire a montré un taux élevé de lymphocytes et de monocytes, comparé aux résultats enregistrés dans l’expérience n°1.

Discussion

Les valeurs numériques des facteurs antitrypsines et d’uréase obtenues dans la présente étude sur les échantillons des graines de soja brutes et grillées sont comparables à celles rapportées par Sio et Tinga sur les graines de soja brutes et cuites pendant 60min et ont été conformes aux normes de qualité nutritionnelle proposées par Larbier et Leclercq.

La faible consommation alimentaire, associée au gaspillage d’aliment et à la fréquence des diarrhées dans l’expérience n°1 montrent que les rations contenant le soja brut sont moins appetissantes et semblent toxiques par rapport à la ration contrôle. Les baisses significatives du gain pondéral quotidien, de l’efficacité alimentaire et du poids moyen final des animaux avec le niveau croissant d’incorporation des graines de soja brutes dans la ration montrent que les protéines de celles-ci sont moins digestibles que celles du touréau. Ce faible niveau d’utilisation des nutriments du soja brut se traduit par un coût alimentaire de production du kg de poids vif significativement élevé à partir de 18,6% du soja brut. Les performances de croissance obtenues sont, cependant, supérieures au gain quotidien de 190g et à l’indice de consommation de 4,38 rapportés par Combs et al. et inférieures au gain de poids de 575g/jour et à l’indice de consommation de 3,42 rapportés par Ochetim et Nicholson chez des porcs en croissance alimentés avec des rations à base de graines de soja brutes.

Dans l’expérience n°2, l’absence de différences significatives entre les paramètres zootechniques mesurés, sauf au niveau du gain pondéral quotidien à 100% de substitution, montre que le soja grillé peut économiquement remplacer le touréau dans les rations alimentaires des porcs en croissance. La baisse relative, non significative de 5,89% du coût alimentaire de production du kg de poids vif de la ration témoin à la ration contenant 100% du soja grillé montre que l’avantage économique de l’utilisation de ce produit réside dans la valorisation d’une ressource alimentaire disponible localement. Ce résultat est en accord avec celui rapporté par Meffeja et al. sur les performances des porcs alimentés de soja cuit ou grillé.

Les paramètres hématologiques enregistrés au cours des deux expériences, ont été comparables aux caractéristiques physiologiques normales des paramètres sanguins des porcs en bonne santé. Cependant, les taux des lymphocytes et des monocytes ont été plus élevés dans la formule leucocytaire, comparé aux valeurs rapportées par Schirvel et Karlotto (tableaux 4 et 6). Le niveau d’incorporation croissante de soja brut ou grillé n’a pas significativement influencé les paramètres sanguins analysés, ce qui est en contradiction avec les observations de
Pugliese qui a rapporté qu'à des taux élevés de soja brut dans les rations alimentaires, certaines substances antinutritionnelles provoquent l'hémolyse des globules rouges du sang et entraînent l'anémie chez les animaux.

Conclusion

Les résultats obtenus dans la présente étude montrent qu'un taux d'incorporation de 12,40% de graines de soja brutes dans les rations alimentaires des porcs en croissance est sans effets négatifs notables sur les performances des animaux. D'autre part, le tourteau de soja peut être complètement substitué par les graines de soja grillées dans les rations alimentaires des porcs sans baisse significative des performances.

Remerciements

Les auteurs tiennent à remercier le Service d'Hématologie de l'Hôpital Central de Yaoundé (HCY) pour l'analyse électronique des échantillons de sang.

Références bibliographiques

Reçu pour publication le 09 août 2004
PRODUCTIVITES COMPARAEEES DES MOUTONS CROISES MERINOS X DJALLONKE ET DJALLONKE DANS LES MONTS BAMBOUTOS : HAUTES TERRES DE L’OUEST CAMEROUN

Y. MANJELI, J. TCHOUMBOUE et A. T. NIBA

DEPARTEMENT DES PRODUCTIONS ANIMALES

UNIVERSITE DE DSCHANG
B. P. 383, DSCHANG, CAMEROUN.

COMPARISON OF PRODUCTIVITIES OF CROSSBRED MERINOS X DJALLONKE AND DJALLONKE IN THE MOUNTAINS OF BAMBOUTOS: WESTERN CAMEROON HIGHLANDS

Summary

Growth, reproductive and productivity performances collected from 480 crossbred Merinos x Djallonke (MD) and 450 Djallonke (D) between 1994 - 1998 in the mountains of Bamboutos (Cameroon) were compared. Crossbred lambs were significantly (P<0.05) heavier at birth, 3 and 12 months of age and these were respectively, 3.3, 14.4 and 27.3 kg as compared to 1.9, 10.1 and 17.4 kg for Djallonke. While ages at first lambing and litter sizes at birth and weaning were comparable for the two genetic groups, crossbreds however, had a significantly (P<0.05), shorter lambing interval (262 days) as compared to that of Djallonke (283 days). The annual reproductive and mortality rates were higher (P<0.05) for crossbreds (1.99 and 64.6%) than for the Djallonke (1.70 and 45.4%). For the productivity indices and as opposed to Djallonke, the crossbreds recorded higher (P<0.01) values for the index I and III with respectively 32.4 and 2.1 kg as compared to 18.2 and 1.7 kg for the Djallonke. However, the two genetic groups had comparable values for index II that is 0.85 as against 0.83 kg in that order.

Key words: Sheep, Merinos x Djallonke, Djallonke, Growth, Reproduction, Mortality, Productivity, Cameroon.

Résumé

Les performances de croissance, de reproduction et de productivité collectées sur 480 moutons croisés Méridos x Djallonké (MD) et 450 moutons Djallonké (D) dans les Monts Bamboutos (Cameroun) entre 1994 – 1998 sont comparées. Les agneaux croisés (MD) sont significativement plus lourds (P<0,05) à la naissance, à 3 et à 12 mois d’âge, soit respectivement 3,3 ; 14,4 et 27,3 kg contre 1,9 ; 10,1 et 17,4 kg pour la race Djallonké. L’âge à la première mise bas ainsi que la taille de la portée à la naissance et au sevrage sont comparables pour les deux types génétiques. Cependant, les croisés ont un intervalle des agnelages (262 jours) significativement inférieur (P<0,05) à celui des Djallonké (283 jours), un taux annuel de reproduction et de mortalité significativement supérieurs (P<0,05), soit respectivement 1,99 et 64,6% contre 1,70 et 45,4% chez les Djallonké. Pour les indices de productivité et par rapport aux Djallonké, les croisés sont supérieurs (P<0,01) pour les indices I et III, soit respectivement 32,4 et 2,1 kg contre 18,2 et 1,7kg et comparables pour l’indice II soit 0,85 contre 0,83kg.

Mots-clés: Moutons, Mérinos x Djallonké, Djallonké, Croissance, Reproduction, Mortalité, Productivité, Cameroun.
Introduction

A notre connaissance, aucune étude systématique ne semble jusqu'ici avoir été consacrée à l'évaluation de la contribution éventuelle du Mérinos à la productivité de l'élevage ovin au Cameroun.

L'objectif de la présente étude était d'évaluer quelques performances de croissance pondérale, de reproduction et de productivité des Djallonké et croisés Mérinos x Djallonké dans les conditions des Monts Bamboutos.

Matériel et Méthodes

Milieu d'élevage

Les Monts Bamboutos sont situés dans les Hautes Terres de l'Ouest du Cameroun (5°30' - 5°50' LN et 10°50' - 10°10' LE) à une altitude variant de 1500 à 2700 m. Le relief est caractérisé par des pentes parfois fortes supérieures à 25 % ; les précipitations annuelles se situent entre 2000 et 2400 mm. Le climat est de type mousson équatorial atténué par l'altitude comportant une saison sèche de novembre à mars et une saison des pluies de mai à octobre. La température annuelle moyenne est de 20°C comprise entre un maximum de 30°C et un minimum de 14°C. L'hygrométrie est élevée (65 –90% d'humidité relative). Les sols sont constitués de trachytes, rhyolites et basaltes couverts de cendres volcaniques. La végétation dominante est constituée de Sporobolus sp., Hyparrhenia sp. et Pennisetum clandestinum.

Conduite de l'élevage

Les animaux étaient gardés à la bergerie la nuit et conduits sur pâturages naturels le jour. La supplémentation de ces animaux se limitait à la distribution occasionnelle du sel. La monte était naturelle ; le bélier, choisi sur la base de son format était maintenu en permanence dans le troupeau et aussi longtemps qu'il pouvait se reproduire. Il était soit métrissé pour les femelles croisées, soit de race Djallonké pour les deux types génétiques de femelles. Le rapport mâles/femelles reproducteurs était de 1/20.

Matériel animal

Entre 1994 et 1998, 450 et 480 moutons respectivement de race Djallonké et croisés Mérinos x Djallonké avaient été suivis mensuellement dans 4 exploitations dont les effectifs moyens variaient de 40 à 65 pour les Djallonké et de 100 à 160 pour les croisés Mérinos x Djallonké. Les exploitations choisies étaient comparables pour ce qui est du système d'élevage et de la conduite du troupeau.

Dès le début de l'étude, chaque animal suivi était identifié à l'aide d'une boucle plastique numérotée fixée à l'oreille et toutes les informations antécédentes disponibles à son sujet étaient répertoriées.
Pour les types génétiques, tout mouton avec des traces de laine repérable était considéré comme croisé Mérinos x Djallonké et en son absence le mouton était classé comme Djallonké. Le mouton Djallonké est connu pour être une race à poils ras sans présence de laine alors que chez les Mérinos, la laine est la toison caractéristique. Sur cette base et faute d’un critère plus rigoureux, la présence de la laine nous a paru être un critère phénotypique suffisant pour discriminer les deux types génétiques. Nous avons estimé que l’absence “totale” de laine étant la marque d’une dominance poussée du type Djallonké et surtout quand le rapport de la densité des follicules secondaires et primaires était inférieur à 4/13. Le facteur sexe de l’animal était pris en compte. L’âge était déterminé sur la base du commémoratif (informations disponibles au niveau de l’éleveur), du nombre des dents et du développement de la dentition.

Enregistrement des données

Les données suivantes ont été obtenues de chaque mouton identifié : les adultes (plus d’un an) étaient pesés une fois par an alors que les jeunes (moins d’un an) l’étaient une fois par mois jusqu’à l’âge d’un an à l’aide d’une balance salter de précision 20g. Le poids à la naissance était enregistré jusqu’à l’âge de 3 jours et le poids au sevrage à 150 jours. Les dates de saillies, de mises bas et de sevrage ainsi que les types de naissance, la taille de la portée à la naissance, les entrées et les sorties d’animaux étaient relevées. Les mortalités étaient enregistrées sur l’ensemble des animaux de 1994 à 1998. Du fait des contraintes associées au système d’élevage extensif pratiqué, les avortements étaient rarement enregistrés.

Analyse des données

L’âge moyen au premier agnelage a été déterminé à partir de la carrière de toutes les femelles présentes dans le troupeau à la fin de l’essai et ayant agnélu au moins une fois. L’intervalle des agnelages a été estimé à partir du groupe des femelles présentes à la fin de l’essai et ayant eu au moins deux agnelages. L’analyse statistique a été réalisée avec le modèle linéaire généralisé du logiciel SAS. Pour la reproduction, les facteurs utilisés ont été les suivants : année (1994, 1995, 1996, 1997,1998), saison des mises bas (pluvieuse ou sèche), élevages et types génétiques (Djallonké, Croisés Mérinos x Djallonké). Pour les performances de croissance, les facteurs suivants ont été également pris en compte : sexe (mâle, femelle), types de naissance (simple ou multiple). La méthode de Duncan a été utilisée pour la séparation des moyennes. La taille de la portée à la naissance a été estimée comme le nombre moyen d’agneaux nés dans chaque portée. Le taux annuel de reproduction ou nombre d’agneaux produits par brebis et par an, a été calculé comme taille de la portée à la naissance x 365 / intervalle des mises bas (en jours). Le taux de mortalité a été déterminé pour deux périodes : naissance à trois mois, trois à douze mois d’âge. Pour chaque période, le taux de mortalité a été calculé comme le rapport (en pourcentage) entre le nombre d’animaux morts et l’effectif moyen des animaux nés. Ce taux a ainsi été calculé pour les groupes génétiques, le type de naissance et la saison de naissance. Les effets de ces facteurs sur le taux de mortalité ont été analysés par la méthode de Chi-deux (X^2) dans la table de contingence de $2 \times C^{10}$. Les productivités pondérales ont été définies comme suit : Indice I (agneau sevré
par brebis par an (kg)). Indice II (agneau sevré par kg du poids vif adulte de la femelle par an (kg)). Indice III (agneau sevré par kg du poids métabolique (W^{0.75}) de la femelle par an (kg)). Ces indices ont été calculés sur la base de ceux utilisés dans les travaux publiés par Charray et al.11 et par l'ILCA 12.

Résultats

Performances pondérales

Les paramètres étudiés (poids à la naissance, à 3 et 12 mois), ont été significativement influencés (P < 0,05) par les facteurs année, rang de mise bas, sexe, mode de naissance et types génétiques ainsi que par quelques interactions (types de naissance et sexe x types génétiques) (tableau 1). Le poids moyen tous sexes confondus à la naissance, à 3 et 12 mois ont bénéficié d'une amélioration de 75, 40 et 56 % respectivement chez le croisé Mérimos x Djallonké par rapport au Djallonké. Indépendamment du type de naissance et du sexe, les Mérimos x Djallonké ont révélé des performances pondérales significativement plus élevées par rapport à celles des Djallonké (P < 0,05).

Performances de reproduction

Elles sont présentées dans le tableau 2. En dehors des types génétiques, l'année, la saison d'agelage et le type d'agelage ont eu un effet significatif (P <0,05) sur l'âge à la première mise bas. L'âge au premier agelage pour le croisé Mérimos x Djallonké (471 ± 14 jours), bien qu'inférieur de 12 jours a été néanmoins comparable à celui des brebis Djallonké pures (483 ± 6 jours). L'intervalle des agelages a été de 262 ± 43 jours chez les croisés Mérimos x Djallonké. Il est significativement inférieur (P <0,05) à celui du mouton Djallonké 283 ±38 jours.

Les tailles de la portée 1,30 ± 0,17 à la naissance et 1,08 ± 0,06 au sevrage obtenues chez le croisé sont statistiquement comparables (P >0,05) aux valeurs enregistrées chez le Djallonké respectivement 1,21 ± 0,3 à la naissance et 1,12 ± 0,1 au sevrage.

Le taux annuel de reproduction moyen (agneaux nés/mère/an) des brebis Mérimos x Djallonké adultes est significativement (P <0,05) supérieur à celle des brebis Djallonké.

Le taux de survie (tableau 3) est deux fois plus élevé entre la naissance et 3 mois d'âge pour les agneaux Djallonké comparé à celui des croisés Mérimos x Djallonké. A l'inverse, pour la période entre 3 – 12 mois, le niveau de mortalité est plus proche entre les deux types génétiques avec même une légère infériorité pour les croisés. La mortalité entre naissance et un an est forte pour les deux types d'agneaux, mais plus élevée pour les croisés 65 % contre 45 % pour les agneaux Djallonké indiquant une plus grande fragilité des premiers.

Indices de productivité

D'après le tableau 4, l'indice moyen de productivité calculé comme le poids (kg) de l'agneau sevré par mère et par an (indice I), s'est élevé à 32,4 kg pour les croisées (MD) contre 18,2 kg pour le mouton Djallonké (D). Pour le kg d'agneau sevré par kg de poids vif adulte de la femelle par an (indice II), les 2 types génétiques sont statistiquement comparables malgré la supériorité des croisés (0,85 kg) au Djallonké (0,83 kg) en valeur absolue. A l'indice III, le kg d'agneau sevré par kg du poids métabolique de la femelle adulte, les croisés Mérimos sont encore significativement (P <0,05) supérieurs (2,1 kg) aux Djallonké (1,7 kg). On observe globalement une supériorité des croisés en ce qui concerne la productivité pondérale.
Tableau 1: Poids à la naissance, à 3 et à 12 mois par types génétiques et sexe des moutons Djallonké et croisés Mérintos x Djallonké dans les Monts Bamboutos, Hautes Terres de l'Ouest du Cameroun (en kg).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Djallonké</th>
<th>Mérintos x Djallonké</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n X ± ES</td>
<td>n X ± ES</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>298 1,88 ± 0,04a</td>
<td>266 3,30 ± 0,04b</td>
</tr>
<tr>
<td>Simple</td>
<td>156 2,03 ± 0,04a</td>
<td>161 3,60 ± 0,04b</td>
</tr>
<tr>
<td>Gémellaire</td>
<td>142 1,72 ± 0,04a</td>
<td>105 3,00 ± 0,04b</td>
</tr>
<tr>
<td>Mâle</td>
<td>144 1,92 ± 0,04a</td>
<td>104 3,40 ± 0,04b</td>
</tr>
<tr>
<td>Femelle</td>
<td>154 1,83 ± 0,04a</td>
<td>162 3,20 ± 0,04b</td>
</tr>
</tbody>
</table>

Poids à 3 mois*

Moyenne générale	236 10,07 ± 0,05a	148 14,39 ± 0,05b
Simple	135 10,65 ± 0,04a	86 16,14 ± 0,06b
Gémellaire	101 9,48 ± 0,04a	62 12,63 ± 0,06b
Mâle	91 10,15 ± 0,06a	32 16,14 ± 0,06b
Femelle	145 9,98 ± 0,04a	116 12,63 ± 0,04b

Poids à 12 mois*

Moyenne générale	178 17,36 ± 0,05a	118 27,32 ± 0,06b
Simple	126 18,16 ± 0,04a	84 30,30 ± 0,05b
Gémellaire	52 16,56 ± 0,06a	34 24,34 ± 0,06b
Mâle	48 18,11 ± 0,06a	8 31,61 ± 0,08b
Femelle	130 16,60 ± 0,04a	110 22,96 ± 0,04b

*P<0.05

n = Nombre d’observations
X ± ES = moyenne ± erreur standard
a, b = les valeurs portant les mêmes lettres en ligne ne sont pas significativement différentes (P<0.05).
Tableau 2: Performances de reproduction des moutons Djallonké et croisés Mérinos x Djallonké dans les Monts Bamboutos, Hautes Terres de l'Ouest du Cameroun.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Types Génétiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Djallonké</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Age au 1er agnelage (j)</td>
<td>206</td>
</tr>
<tr>
<td>Taille de la portée à la naissance</td>
<td>190</td>
</tr>
<tr>
<td>Taille de la portée au sevrage (150 j)</td>
<td>124</td>
</tr>
<tr>
<td>Intervalle entre agnelages (j)</td>
<td>167</td>
</tr>
<tr>
<td>Poids moyens agneaux au sevrage (kg)</td>
<td>124</td>
</tr>
<tr>
<td>Poids moyens femelles adultes (kg)</td>
<td>187</td>
</tr>
<tr>
<td>Taux annuel de reproduction (agneaux/femelle/an)</td>
<td>216</td>
</tr>
</tbody>
</table>

\(n = \) Nombre d’observations
\(X ± ES = \) moyenne ± erreur standard
\(a, b = \) les valeurs portant les mêmes lettres en ligne ne sont pas significativement différentes (P<0,05).

Tableau 3: Taux de mortalité des agneaux (%) de la naissance à un an des moutons Djallonké et croisés Mérinos x Djallonké dans les Monts Bamboutos, Hautes Terres de l’Ouest du Cameroun.

<table>
<thead>
<tr>
<th>Types génétiques</th>
<th>Nombre né</th>
<th>Naissance – 3 mois</th>
<th>3 – 12 mois</th>
<th>Naissance – 12 mois</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djallonké</td>
<td>298</td>
<td>20,8</td>
<td>24,6</td>
<td>45,4</td>
</tr>
<tr>
<td>Mérinos x Djallonké</td>
<td>236</td>
<td>44,4</td>
<td>20,2</td>
<td>64,6</td>
</tr>
<tr>
<td>Moyenne</td>
<td>534</td>
<td>32,6</td>
<td>22,4</td>
<td>55,0</td>
</tr>
</tbody>
</table>
Tableau 4 : Productivités pondérales des moutons Djallonké et croisés Mérisos x Djallonké dans les Monts Bamboutos, Hautes Terres de l’ouest du Cameroun.

<table>
<thead>
<tr>
<th>Indices</th>
<th>Djallonké</th>
<th>Mérisos x Djallonké</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>X ± ES</td>
<td>n</td>
</tr>
<tr>
<td>I</td>
<td>167</td>
<td>18,2 ± 1,36b</td>
</tr>
<tr>
<td>II</td>
<td>167</td>
<td>0,83 ± 0,08a</td>
</tr>
<tr>
<td>III</td>
<td>167</td>
<td>1,73 ± 0,10b</td>
</tr>
</tbody>
</table>

X ± ES = moyenne ± erreur standard
a, b = les valeurs portant les mêmes lettres en ligne ne sont pas significativement différentes (P<0,05).

Discussion

Performances pondérales

Les croisements entre races locales et races exotiques ont déjà montré leurs capacités à améliorer les performances pondérales du mouton de race locale en milieu tropical. Ainsi, au Nigeria le croisement de Permer (issu du croisement mouton Blackhead x Mérisos) avec le Djallonké a permis d’améliorer le poids des croisés à un an de 1,8 kg soit une amélioration de 80 % par rapport au Djallonké 13. Par la suite, les croisés ont perdu leur supériorité pondérale (diminution du phénomène d’hétérosis) à cause des conditions d’élevage difficiles en station. Toujours au Nigeria, Adu et Brinckman14 ont également signalé une amélioration de poids et du format des races locales Uda et Yankasa par leur croisement avec le Mérisos. L’amélioration des performances pondérales du mouton Djallonké par croisement avec le Mérisos a été logique. En effet, il y a une grande différence de poids adulte entre les deux races 70 - 80 kg et 25 - 30 kg respectivement pour le Mérisos et le Djallonké.

L’âge à la première mise bas de nos brebis Djallonké est supérieur à ceux obtenus par London et al.15 14,3 mois, Amegée 16 13,5 mois, Berger et Ginisty 17 13,5 mois, Rombaut 10 13,5 mois. Par contre, les valeurs annoncées par Fall et al.18 18,8 mois, Tuah et Bah13 20,9 mois et Missohou et al.19 19,5 mois étaient plus élevées que les nôtres. Il faut remarquer que ces types génétiques atteignent précocement la maturité sexuelle et que l’accouplement n’étant pas contrôlé dans les élevages étudiés, les antenauses sont saillies juste à la puberté puisque certaines étaient gravides dès l’âge de 5 mois.

Le raccourcissement de l’intervalle des mises bas des croisés semble confirmer l’hypothèse selon laquelle la durée de la lumière a peu d’influence sur la capacité reproductive des ovins indigènes ou autres races importées lorsqu’elles sont adaptées20. En effet les agnelages, indépendamment du type génétique des brebis, se sont étalés sur toutes les périodes de l’année. Environ, la moitié des parturitions avaient lieu en juillet - août résultant des saillies survenues au début de la saison des pluies mars - avril.
Le peu de naissances enregistrées entre mars et juin montre la faible activité reproductive de novembre à mars (saison sèche) quand les parcours manquaient d’herbes en quantité et en qualité. L’intervalle des mises bas comprend la durée de la gestation et la période de lutte. La durée de la gestation étant peu variable, c’est la période de lutte qui probablement justifie l’allongement de l’intervalle constaté chez le mouton Djallonké. En effet, la croissance pondérale des agneaux croisés est significativement plus rapide que celle des agneaux Djallonké (P < 0,05). Comme conséquences, les agneaux croisés sont prêts à quitter leur mère plus précocement. Ceci est surtout vrai pour les mâles croisés qui en raison de leur vitesse de croissance plus rapide atteignent plus précocement un poids commercialisable. Chez les brebis ainsi libérées, on peut penser qu’il y a levée de l’anœstrus de lactation, la remise des brebis à la lutte et, par conséquent, le raccourcissement des intervalles des agnelages par rapport au Djallonké.

Avec l’indifférence entre les deux types génétiques en ce qui concerne la taille de la portée, on peut penser que lorsque l’hétérozygotie augmente comme dans l’exemple cité, l’effet est plus favorable sur les performances de reproduction y compris la survie des petits, mais la plus grande survie des Djallonké entre la naissance et le sevrage 8 % de pertes contre 18 % pour le croisé s’expliquerait par une plus grande adaptabilité de ce type génétique à son milieu. D’autre part, le croisement du Méribos race à viande de grand format avec le Djallonké expliquerait au moins en partie la faible prolificité des croisés Méribos de nos élevages. En effet, si le mouton Djallonké présente des aptitudes de qualités maternelles, résistance aux pathologies, la plupart des auteurs lui reprochent sa faible prolificité. Tout programme de croissement avec le Djallonké devrait envisager d’allier les aptitudes de rusticité et de prolificité. Dans nos conditions, le Méribos de grand format ne peut améliorer rapidement que les performances de croissance et pas les paramètres de reproduction. D’autre part les contraintes habituelles - consanguinités, saillies prématurées des antenasales et des femelles allaitantes et insuffisances alimentaires sont des causes de faible productivité reproductive et sont d’autant plus élevées lorsque le type génétique est exotique.

Généralement, le taux annuel de reproduction est fonction de la taille de la portée et de l’intervalle des mises bas. La prolificité étant comparable (P>0,05), la différence entre les deux types génétiques est probablement due à l’intervalle entre les agnelages. Berger et Ginisty ont signalé un taux de reproduction annuel de 1,75 en Côte d’Ivoire.

Pour les deux types génétiques, les causes de mortalité des jeunes sont liées à plusieurs facteurs parmi lesquels on peut signaler, la consanguinité, les saillies des jeunes brebis non matures ou la sous alimentation des femelles gestantes qui aboutissent à la naissance des agneaux fragiles qui, par la suite, souffrent des effets de la faible lactation des mères et des pathologies où dominent les pneumoentérites infectieuses et/ou parasitaires. Entre 0 – 3 mois, les agneaux Djallonké résistent mieux en raison de leur plus grande adaptation. La plus forte mortalité des agneaux croisés pourrait s’expliquer entre autre par un déficit d’allaitement par rapport à leurs besoins de croissance plus élevés. Cette hypothèse reste cependant à vérifier.
et à mesurer. Ndamukong a observé chez les ovins locaux un taux de mortalité de 68,4%, qui est supérieur à celui obtenu dans cette étude.

En tenant compte de la conformation ou du format, la différence observée entre les deux types génétiques en ce qui concerne l’indice I et III est bien justifiée par la supériorité pondérale des croisés Mérinos décrit plus haut. Les croisés Ménoros sont généralement plus lourds que le mouton Djallonké, et la production est aussi proportionnelle à leur poids absolu. Le recours aux croisements en vue d’accroître la productivité du bétail est une pratique très ancienne et est à la base de la formation de nombreuses races dites synthétiques. Chez le mouton, les avantages de cette méthode d’amélioration sont bien documentés. Les formes d’utilisation des croisements pour améliorer la productivité des races ovines ont été décrites.

Conclusion

Dans les conditions des monts Bambaroules, les moutons croisés Mérinos x Djallonké ont révélé des performances de croissance pondérale significativement supérieures par rapport au mouton Djallonké. Si les performances de reproduction sont globalement comparables, les indices de productivité sont quant à eux, significativement plus élevés chez les croisés.

Le croisement Mérinos x Djallonké peut donc être considéré comme une option d’amélioration des performances, notamment pondérales de la race Djallonké si elle est toutefois associée à de meilleures conditions d’élevage. L’efficacité d’un tel croisement pourrait être améliorée par une sélection préalable de la race locale pour les paramètres souhaités, la détermination du meilleur niveau de croisement, l’introduction régulière de nouveaux géniteurs Mérinos pour le croisement de retrempe; il faudrait aussi éviter la dépression génétique.

Références bibliographiques

Reçu pour publication le 15 septembre 2003
CARACTERISTIQUES METRIQUES DES SOUCHES CAPRINES DE LA REGION DES PLATEAUX AU CONGO BRAZZAVILLE

KINGA JEAN CLAUDE, CHERCHEUR au CRVZ
MOUANGOU JEAN FULGENCE, CHERCHEUR à l’UMNG

METRIC FEATURES OF GOATS CLONES OF PLATEAUX REGION IN CONGO BRAZZAVILLE

Summary

The goat clones of plateaux region have various weights. The measurements for these animals show a different evolution according to the sex, clone and age. The correlation factors between alive weight and thoracic area the alive weight and the depth of the chest obtained are raised up chiefly in young age categories.

The linear regression equations provided an accuracy of the weight the condition to remain in the spaces of age category.

The respective influences of age and size of animals can be broke up from one to another. However we have especially focused our study on the individual format because the age is often difficult to determine in our working conditions.

Résumé

Les races caprines de la Région des Plateaux ont des poids variés. Les mensurations chez ces animaux indiquent une évolution différente suivant le sexe, la souche et l’âge.

Les coefficients de corrélation entre le poids vif et le périmètre thoracique, le poids vif et la profondeur de la poitrine obtenue sont élevés surtout dans les classes d’âge jeune. Les équations de régression linéaire fournissent une précision de l’estimation du poids à condition de rester dans les intervalles de classe d’âge. Les influences respectives de l’âge et du format des animaux peuvent difficilement être dissociées l’une de l’autre.

Cependant, nous avons essentiellement axé notre étude sur le format des individus, car l’âge est très souvent difficile à déterminer dans nos conditions de travail.

Introduction

Les caprins de la Région des Plateaux apparaissent comme étant une race bien adaptée à son milieu, présentant d’assez bonnes performances zootechniques.

Cette étude élaborée à partir d’une enquête et des observations a pour but d’analyser les indices corporels afin de déterminer le niveau de développement des différentes mensurations. Aussi, la liaison entre le poids et les mensurations pour chaque classe d’âge nous aideront à déterminer les formules barymétriques.

Matériel et Méthodes

L’étude s’est déroulée dans trois sous-préfectures sur quatre que compte la Région des Plateaux. Cette Région est située au Nord du pays. Le pourcentage de ménages
pratiquant l'élevage caprin est assez élevé par rapport à d'autres régions mais ne constitue que rarement une activité principale. Les animaux sont élevés traditionnellement sans parc. Ils sont en divagation et ne bénéficient d'aucune attention particulière. C'est un élevage de prestige.

L'étude est élaborée à partir d'une enquête et a pour objet de faire l'inventaire et la description des races caprines, l'identification d'une race aux performances relativement supérieures.

Un sondage aléatoire à deux degrés avait été utilisé : au 1er degré, les villages échantillons ont été choisis à partir de la liste administrative des villages ; au second degré, les paysans éleveurs ont été choisis à partir de la liste des ménages constituée au 1er degré. Nous avons effectué notre enquête dans cinq villages de chacun des trois sous-préfectures choisis au hasard. Aussi, 5 à 7 éleveurs choisis au hasard avaient été interrogés.

Des séries de pesées avaient été réalisées à l'aide d'un dynamomètre de type Testut de 50 Kg et des séries de mensurations avaient été prises avec un ruban métrique et une règle en T graduée rendue utile grâce à son levier.

Nous avons mené des observations et avons fait des pesées puis des relevés métriques tôt le matin. Ces relevés concernent les mensurations corporelles suivantes : le périmètre thoracique (PT), la hauteur au garrot (HG), la profondeur de la poitrine (PP) et le nombre d'observations (N).

Toutes les fiches d'enquête et les relevées des mensurations avaient été analysées selon les méthodes statistiques simples comprenant le calcul des moyennes, des variances, des écarts-types et des corrélations.

Résultats

1. Mensurations des animaux

Les 352 données relevées sur le terrain ont été réparties par classe d'âge suivant la méthode de chronométrie dentaire. L'analyse de l'évolution des indices corporels des tableaux 1 et 2 montre l'inégale vitesse de développement des différentes

<table>
<thead>
<tr>
<th>Ages</th>
<th>Poids (Kg)</th>
<th>PT (Cm)</th>
<th>HG (Cm)</th>
<th>PT (Cm)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 jours</td>
<td>1,6 ± 0,1</td>
<td>27,5 ± 1,5</td>
<td>23 ± 0,00</td>
<td>11,3 ± 0,00</td>
<td>4</td>
</tr>
<tr>
<td>1 mois</td>
<td>2,3 ± 0,07</td>
<td>30,7 ± 0,04</td>
<td>23 ± 0,00</td>
<td>11,3 ± 0,00</td>
<td>7</td>
</tr>
<tr>
<td>3 mois</td>
<td>4,6 ± 0,2</td>
<td>36,9 ± 0,01</td>
<td>27,4 ± 0,02</td>
<td>14,7 ± 0,01</td>
<td>13</td>
</tr>
<tr>
<td>6 mois</td>
<td>6,7 ± 0,1</td>
<td>41,9 ± 0,4</td>
<td>31,6 ± 0,2</td>
<td>16,3 ± 0,02</td>
<td>14</td>
</tr>
<tr>
<td>9 mois</td>
<td>9,1 ± 0,2</td>
<td>46,8 ± 0,2</td>
<td>34,6 ± 0,3</td>
<td>18,1 ± 0,4</td>
<td>32</td>
</tr>
<tr>
<td>12 mois</td>
<td>12,6 ± 0,1</td>
<td>52,1 ± 0,01</td>
<td>38,6 ± 0,00</td>
<td>20,0 ± 0,00</td>
<td>15</td>
</tr>
<tr>
<td>14 mois</td>
<td>16 ± 0,00</td>
<td>60 ± 0,00</td>
<td>44 ± 0,00</td>
<td>22 ± 0,00</td>
<td>2</td>
</tr>
<tr>
<td>20 mois</td>
<td>24,7 ± 0,00</td>
<td>66,5 ± 0,00</td>
<td>47,5 ± 0,00</td>
<td>25,5 ± 0,00</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>
Tableau 2 : Mesurations des femelles

<table>
<thead>
<tr>
<th>Ages</th>
<th>Poids (Kg)</th>
<th>PT (Cm)</th>
<th>HG (Cm)</th>
<th>PP (Cm)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 jours</td>
<td>1,52 ± 0,3</td>
<td>26,3 ± 0,02</td>
<td>20,5 ± 0,2</td>
<td>9,8 ± 0,2</td>
<td>7</td>
</tr>
<tr>
<td>1 mois</td>
<td>2,2 ± 0,1</td>
<td>30,5 ± 0,1</td>
<td>23,1 ± 0,01</td>
<td>12 ± 0,00</td>
<td>21</td>
</tr>
<tr>
<td>3 mois</td>
<td>4,6 ± 0,00</td>
<td>36,8 ± 0,2</td>
<td>27,5 ± 0,01</td>
<td>14,3 ± 0,01</td>
<td>15</td>
</tr>
<tr>
<td>6 mois</td>
<td>6,6 ± 0,01</td>
<td>42,2 ± 0,00</td>
<td>30,3 ± 0,5</td>
<td>15,6 ± 0,3</td>
<td>21</td>
</tr>
<tr>
<td>9 mois</td>
<td>9,2 ± 0,4</td>
<td>47 ± 0,05</td>
<td>25,6 ± 0,1</td>
<td>17,8 ± 0,4</td>
<td>34</td>
</tr>
<tr>
<td>12 mois</td>
<td>11,6 ± 0,05</td>
<td>50,3 ± 0,03</td>
<td>37,2 ± 0,6</td>
<td>19,1 ± 0,05</td>
<td>18</td>
</tr>
<tr>
<td>14 mois</td>
<td>14,4 ± 0,3</td>
<td>55,6 ± 0,3</td>
<td>40 ± 0,6</td>
<td>21,4 ± 0,2</td>
<td>27</td>
</tr>
<tr>
<td>20 mois</td>
<td>19,1 ± 0,02</td>
<td>61,1 ± 0,02</td>
<td>42,2 ± 0,01</td>
<td>22,4 ± 0,04</td>
<td>19</td>
</tr>
<tr>
<td>25 mois</td>
<td>22 ± 0,00</td>
<td>64,9 ± 0,1</td>
<td>43,1 ± 0,02</td>
<td>23,9 ± 0,1</td>
<td>13</td>
</tr>
<tr>
<td>32 mois</td>
<td>25,2 ± 0,00</td>
<td>66,6 ± 0,00</td>
<td>43,9 ± 0,2</td>
<td>24,9 ± 0,2</td>
<td>22</td>
</tr>
<tr>
<td>42 mois</td>
<td>28,1 ± 0,2</td>
<td>70 ± 0,00</td>
<td>45,6 ± 0,03</td>
<td>25,7 ± 0,4</td>
<td>34</td>
</tr>
<tr>
<td>50 mois</td>
<td>31,2 ± 0,4</td>
<td>75,5 ± 0,02</td>
<td>46,4 ± 0,2</td>
<td>27,4 ± 0,02</td>
<td>22</td>
</tr>
<tr>
<td>60 mois</td>
<td>34,1 ± 0,00</td>
<td>76,9 ± 0,7</td>
<td>46,5 ± 0,00</td>
<td>27,9 ± 0,2</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 263

Tableau 3 : Coefficients de corrélation et Equations de régression

<table>
<thead>
<tr>
<th>Ages</th>
<th>N</th>
<th>Moyennes & Ecart-types</th>
<th>Equations de régression</th>
<th>Coef. de corrélation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mois</td>
<td>15</td>
<td>PT = 30,06 ± 2,14</td>
<td>Y = 0,18 X - 3,99*</td>
<td>0,86 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HG = 23,05 ± 1,17</td>
<td></td>
<td>0,27 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 11,5 ± 1,4</td>
<td></td>
<td>0,64 s</td>
</tr>
<tr>
<td>3 mois</td>
<td>28</td>
<td>PT = 36,89 ± 1,6</td>
<td>Y = 0,24 X - 4,2 *</td>
<td>0,78 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HG = 27,5 ± 1,9</td>
<td></td>
<td>0,44 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 14,5 ± 0,98</td>
<td></td>
<td>0,59 s</td>
</tr>
<tr>
<td>6 – 9</td>
<td>69</td>
<td>PT = 38,7 ± 22,04</td>
<td>Y = 0,21 X - 1,6*</td>
<td>0,99 s</td>
</tr>
<tr>
<td>mois</td>
<td></td>
<td>HG = 33,2 ± 15,9</td>
<td></td>
<td>0,66 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 14,6 ± 8,6</td>
<td></td>
<td>0,98 s</td>
</tr>
<tr>
<td>12 – 14</td>
<td>66</td>
<td>PT = 53,4 ± 14,6</td>
<td>Y = 0,6 X - 17,6 *</td>
<td>0,92 s</td>
</tr>
<tr>
<td>mois</td>
<td></td>
<td>HG = 36,6 ± 9,6</td>
<td>Y = 0,33 P + 0,26</td>
<td>0,88 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 19,2 ± 5,1</td>
<td>Y = 0,6 Z - 0,3</td>
<td>0,93 s</td>
</tr>
<tr>
<td>20 – 25</td>
<td>43</td>
<td>PT = 61,67 ± 3,9</td>
<td>Y = 0,4 X - 5 *</td>
<td>0,72 s</td>
</tr>
<tr>
<td>mois</td>
<td></td>
<td>HG = 42,5 ± 3,1</td>
<td></td>
<td>0,26 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 23 ± 1,51</td>
<td>Y = 0,69 Z + 35,7</td>
<td>0,51 s</td>
</tr>
<tr>
<td>32 – 42</td>
<td>66</td>
<td>PT = 69,4 ± 3,7</td>
<td>Y = 0,6 X - 14,36 *</td>
<td>0,72 s</td>
</tr>
<tr>
<td>mois</td>
<td></td>
<td>HG = 45,1 ± 7,1</td>
<td></td>
<td>0,15 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PP = 25,7 ± 1,7</td>
<td>Y = 0,91 Z + 3,9</td>
<td>0,66 s</td>
</tr>
</tbody>
</table>

Y = Poids vif ; X = PT ; P = HG ; Z = PP
* = Equation donnant des tables de conversion
S = Significatif à P<0,05 ; NS = Non significatif
mensurations. Relativement rapide dans les premiers mois de la vie, cette vitesse diminue progressivement au fur et à mesure que l’âge des animaux augmente suivant en cela les lois générales de la croissance. La HG croît moins vite que le PT mais plus que la PP qui n’évolue que très peu. Ce qui se traduit chez les animaux adultes par un développement en largeur plus accentué.

2. Comparaison des moyennes de poids

La comparaison des moyennes de poids dans les trois sous-préfectures visitées fait ressortir qu’elles ne sont pas significativement différentes à P < 0,09. Mais la comparaison des moyennes de poids des animaux adultes entre les deux souches donne les résultats suivants :

- de 20 à 25 mois, ces moyennes ont significativement différentes à P< 0,05 (les femelles de la souche 1 pèsent 22,8 ± 0,1 kg et celles de souche 2 pèsent 18,27 ± 0,03 kg);
- de 26 à 32 mois, la différence de poids moyen entre souche est significative à P< 0,01.
- (les femelles de souche 1 pèsent 26,65± 0,2 kg contre 21,5±0,1 kg pour celles de souche 2);
- de 33 à 42 mois cette différence est significative à P < 0,05.

Ceci conduit à conclure que les poids de la souche 1 apparaissent relativement élevés par rapport à leur homologue de la souche 2.

3. Corrélation des Différentes Mensurations et Formules barymétriques.

Les résultats de différentes mensurations du tableau 3 montrent que les couples (PV - PT), (PV- HG) et (PV- PP) établis ont des fortes corrélations significatives à P<0,05. Mais une analyse de sexe n’a pu être faite à cause des échantillons trop réduits par classe d’âge. On peut toutefois noter que le PT est en très forte corrélation avec le poids vif (0,66 à 0,99) suivi de la PP (0,42 à 0,98) puis de la HG (0,44 à 0,88).

La régression linéaire a été examinée par la liaison du PT et du PV pour chaque classe d’âge. Les coefficients de corrélation sont plus élevés chez les jeunes que chez les adultes ; ils diminuent progressivement à mesure que l’animal atteint son poids adulte.

Le PT et la PP respectivement le tour et le diamètre du tronc, sont plus représentatifs de la masse corporelle donc du poids vif que la HG.

Discussion

Les coefficients de corrélation obtenus sont élevés, très significatifs et plus forts pour les classes jeunes, puis diminuent progressivement en fonction de l’âge. Le phénomène de croissance se traduit par une augmentation progressive du rapport PT/HG de 1,28 à 8 jours à 1,6 à 54 mois chez les femelles et de 1,19 à 8 j à 1,4 à 20 mois chez les mâles. Ce qui résulterait d’une plus grande évolution de la masse corporelle chez les animaux âgés par rapport à la taille qui serait très vite atteinte chez les jeunes.

Le rapport HG/PP au contraire ne fait que diminuer de 2,09 à 8 j à 1,6 à 54 mois chez les femelles et de 2,19 à 8 j à 1,86 à 20 mois chez les mâles. Ce qui confirme la faible évolution de HG, c’est à dire de la taille chez les animaux âgés et l’augmentation de la masse corporelle. De même, Coulomb et al (1981) et Buvanendran et al (1980) montrent que les ratios de différentes
mensurations corporelles permettent de caractériser les races et ils sont très liés au poids du corps.

Cependant, on peut noter que la souche 1 aurait un poil assez fourni et quelques femelles porteraient des pendeloques (N=7) et auraient une barbiche. Cette souche semble avoir des intervalles entre les mises bas relativement courts (8 mois), des naissances gémellaires élevées avec un format moyen de 22,5 ± 0,1 kg à 22,5 mois.

Les animaux de la race 2 aurait un poil ras, des intervalles entre les mises bas compris entre 9 à 10 mois, un taux de prolifcité faible avec un petit format de 18,27± 0,03 kg.

Par ailleurs, la méthode de détermination de l’âge par la chronométrie dentaire ne donne que des âges approchés. L’effet âge persiste principalement dans les classes d’âge précoces ; ce qui explique les coefficients de corrélation entre le poids vif et les mensurations corporelles plus élevées dans celles - ci.

Les mensurations PT et PP présentent les plus forts coefficients de corrélation avec le poids et paraissent plus liées à la masse corporelle que la HG. Le PT serait donc le meilleur estimateur du PV malgré l’effet âge évoqué plus haut.

Conclusion

Cette étude a mis en évidence les influences respectives de l’âge et du format sur la détermination du poids. Les animaux ont des poids variés. Les mensurations chez ces caprins indiquent une évolution différente suivant le sexe, la race et l’âge.

Les résultats obtenus ont apporté quelques éléments d’appréciation sur l’âge et le poids, qui étaient souvent difficiles à estimer sur le terrain. Les équations de régression linéaire fournissent une précision de l’estimation du poids à condition de rester dans les intervalles de classe d’âge.

Références bibliographiques

Reçu pour publication le 01 août 2003
SHORT COMMUNICATION

SMALL RUMINANT PRODUCTION IN BUEA SUBDIVISION, A HUMID TROPICAL AREA OF THE SOUTH-WEST PROVINCE OF CAMEROON

K.J.N. NDAMUKONG* and J.V..MBUH

Faculty of Science, University of Buea, South West Province, Cameroon

The goat and sheep population in the South-West Province of Cameroon has been estimated at 106,423 and 51,983, respectively. They are owned by small scale subsistence farmers in the rural areas where they are reared on natural grass pastures derived by secondary succession after the primary forest has been cut down to create farmlands. The limited arable land available imposes a limitation on grazing land.

The present study was aimed at assessing the level of small ruminant production in Buea subdivision of Cameroon, to allow for the amelioration of productivity and augmentation of income from these animals.

Seven villages in Buea subdivision were randomly selected for the study. In each of these villages, 15 small ruminant farmers were randomly selected and a questionnaire administered to them. The questionnaire was designed to permit the collection of data on flock size and structure, human, nutritional and infrastructural resources, disease problems and cash returns on goat and sheep production.

A total of 105 small ruminant farmers were interviewed, of whom 79% kept only goats, 6.7% kept only sheep and 14.3% kept both sheep and goats. 87.5% of them were males while only 12.5% were females. They all utilized unpaid family labour, particularly children, in caring for the animals.

None of the farmers took on small ruminant rearing as their sole occupation. Rather, 74% of them practised mixed farming of livestock and crops while 27% had off-farm work of various sorts.

Flock sizes were small, averaging 3.2 goats per flock and 2.5 sheep per flock. Mixed flocks (sheep and goats together) were larger, averaging 6.2 animals per flock, with goats outnumbering sheep. Female animals generally outnumbered the males, and adults outnumbered the young animals (Table 1). Sex ratio in single species flocks approximated to 1:2 (male:female). The ratio was, however, narrower in mixed flocks (1:1.4 and 1:1.1 for goats and sheep respectively). In the entire sample population, the male:female ratio was 1:2 for goats and 1:1.2 for sheep (male:female). Goat flock sizes were larger in the villages of Ekona and Tole than in the other five villages studied, averaging 5.7 and 4.5 goats per flock, respectively. Mixed flock sizes were even larger, being 7.8 and 8.0 for Ekona and Tole respectively. In the other villages studied, flock sizes were only half as large.

The most widely practised management system both during the dry and rainy seasons was tethering. In both sheep and goats, significantly more farmers tethered their animals during the rainy season than during the dry season (P<0.05 and P<0.005 for sheep

*Corresponding Author e-mail: kjndamukong@yahoo.com
Table 1. Flock structure of small ruminants in the Buea subdivision of South-West Cameroon

<table>
<thead>
<tr>
<th>Description:</th>
<th>Flock Structure</th>
<th>Population sampled</th>
<th>Percentage Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goats: Males:</td>
<td>Bucks</td>
<td>55</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Kids</td>
<td>55</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>110</td>
<td>33.4</td>
</tr>
<tr>
<td>Females:</td>
<td>Does</td>
<td>152</td>
<td>46.2</td>
</tr>
<tr>
<td></td>
<td>Kids</td>
<td>67</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>219</td>
<td>66.6</td>
</tr>
<tr>
<td>Sheep: Males:</td>
<td>Rams:</td>
<td>15</td>
<td>34.1</td>
</tr>
<tr>
<td></td>
<td>Lambs</td>
<td>5</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>45.5</td>
</tr>
<tr>
<td>Females:</td>
<td>Ewes</td>
<td>16</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td>Lambs</td>
<td>8</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>54.5</td>
</tr>
</tbody>
</table>

and goats respectively). More people tethered their goats than sheep, both during the dry and rainy seasons, but the difference was significant only during the rainy season (P<0.005).

Only 34% of the farmers provided some form of housing for their animals. The farmers who did not provide housing for their animals allowed them to stay the night either in one corner of the kitchen (45.6%) or on the corridor or veranda of the house (30.9%) or in an abandoned or uncompleted house in the compound (23.5%).

Some 23.9% of the farmers provided salt to their animals, but only 3.3% provided water as well. The most important food items were kitchen wastes such as banana, plantain or cassava peelings (51.5%), and leaves (15.5%) followed by left over food (4.2%). The major health problems identified by the farmers, in order of decreasing prevalence, included cough (42.2%), diarrhoea (17.2%), catarrh (14.7%) and conjunctivitis (13.8%).

Most farmers (80%) who kept small ruminants did so as a form of investment and only a small percentage (1.9%) kept them essentially for household consumption. Some 18.1% kept them for both reasons.

Since the numbers were small, most of the sale transactions (75.8%) were done at home while only about 24.2% of the farmers sold their animals in the market. About 63% of the farmers indicated that they generated between 40,000 and 100,000frs annual income from small ruminants. Some 4.3% of the farmers earned above 100,000frs per year from sales of small ruminants. The cash earnings came from sales of animals to restaurant owners, food hawkers and persons roasting meat (47.1%). Other buyers included persons having celebrations such as marriages, births, deaths, parties, festivals, etc (34.3%) and farmers needing breeding stock (14.0%). Another source of income was from sales of manure to vegetable farmers (5.9%).
In the South-West Province of Cameroon, traditional methods of small ruminant husbandry are still prevalent and so are disease problems, which are often related to the management methods. The small flock sizes recorded for goats and sheep are comparable to flock sizes of 3.5 goats and 2.5 sheep in southern Nigeria12, but comparatively lower than those observed in the North West Province of Cameroon3. This can be explained by the fact that the North West is predominantly grassland, and the rolling hills with their grass pastures provide extensive grazing land for the animals. Despite the abundance of green forage during the rainy season, this is not freely available to the animals as they have to be tethered. This also imposes a limitation for selection, leading to inefficient feeding despite the abundant pastures. In conjunction with the increase in internal parasites in the wet season, the limited forage intake due to tethering lowers the performance of the animals4,5.

The high proportion of young animals in the flocks suggests a high production capacity for these animals. The availability of green forage most of the year offers a good opportunity to exploit the high reproductive potential of the animals to improve productivity. Productivity can also be improved by promoting better health care and encouraging farmers to supplement feeding on pastures with supplementary browse, crop residues, household wastes and agro-industrial by-products (especially brewer’s dried grains).

Acknowledgements
The authors are grateful to Miss Dione Agnes Ebong for assistance in the collection of data on the field, and to all the farmers who cooperated in giving us the relevant pieces of information.

References

Received for publication on 12th January, 2004
SHORT COMMUNICATION

EFFECT OF INCREASING DURATION OF WATER DEPRIVATION ON FEED INTAKE, FEED DIGESTIBILITY AND BODY WEIGHT GAIN OF NGANDA SHEEP

N.T. NAJOKE¹, R.N. KINUTHIA²*, C.N. KARUE² and D.M. NYARIKI²

¹Department of Agriculture, P.O. Box 72, Mukono, Uganda
²Department of Range Management, University of Nairobi, Box 29053, Nairobi, Kenya

Water is an absolute necessity for all animals and lack of access to ample supply of it constitutes a serious constraint to their overall productivity¹. For instance, whereas starving animals may lose nearly all their glycogen and fat reserves, half of their body protein and about 40 percent of their body weight and still survive, loss of only 10 percent of body water causes serious disorders and further loss may quickly lead to death². Yet, only scanty attention has been given to water in livestock nutrition research.

Water and feed consumption by livestock are closely related³⁴. Moderate restriction to water reduces feed intake and productivity, while more severe restriction results in rapid weight loss as the body dehydrates⁵. Data on the amount of water different kinds and/or classes of animals require under different environmental conditions are rare. The situation is even worse in tropical arid and semi-arid areas⁶⁷. Information on the water requirements of livestock and their ability to withstand its scarcity is therefore of practical management importance to livestock producers, particularly in the arid areas⁸. The objective of this study was to determine the effects of four different lengths of water deprivation on feed intake, feed digestibility and growth rate of Nganda sheep in eastern Uganda.

The study was conducted in Kyerima village, Kitimbwa subcounty, Ntenjeru County, Mukono district, Uganda. Total annual rainfall ranges between 750 and 1000 mm and is of bimodal distribution. Annual temperatures rarely exceeding 37°C. The primary land use activity is livestock production, but crops like millet, sorghum and maize are cultivated during the wet season.

Sixteen local adult male sheep (16 kg body weight) were randomly assigned to four watering regimes as follows: ad libitum (T₁), once in 24 hrs (T₂), once in 48 hrs (T₃), and once in 72 hrs (T₄). Animals in T₂, T₃ and T₄ received ten litres of water each in a 30 minutes watering period, while T₁ had a free access to water. The amount of water consumed by each animal was calculated as the difference between the amount offered and the amount refused. All animals were fed on local grass hay. Feeding was done twice a day, at about 0800 and 1600 hrs, with the amount fed each day being adjusted to 105% of the previous day's intake. The amount of feed offered, the amount refused, and the amount of faeces egested were weighed and recorded. Daily feed intake was calculated as the difference between the amount of feed offered and the amount refused, while the apparent digestibility of the feed was estimated as the difference between the amount of feed consumed by each animal and the quantity of faeces egested and expressed as percent of intake. The experimental animals were weighed individually at the beginning of the trial and, thereafter, weekly, until the end of the trial.

* Corresponding author: E-mail: rosety@insightkenya.com
Weighing was carried out prior to feeding and watering. Data were subjected to Fisher’s one-way analysis of variance (ANOVA). Where treatment effects were significant, mean separation tests using Duncan’s New Multiple Range Tests were conducted. Two-variable regression analyses were used to determine whether there were significant relationships between watering frequency and water consumption, feed intake, feed digestibility and body weight gains.

Average water intake, feed consumption and feed digestibility decreased with increase in the duration of water deprivation (Table 1). T1 exhibited the highest water intake, feed intake and feed digestibility, while T4 had lowest. T1 and T2 were similar in digestibility. For the four treatment groups, the average water intakes were 10, 8, 5.2 and 3.7% of the body weights, respectively, while feed intakes were 3, 2.5, 2.4 and 2.3% of the body weights, respectively. The data revealed a positive and strong correlation between water and feed intake ($r^2 = 0.94$), and water intake and dry matter digestibility ($r^2 = 0.86$).

Watering frequency significantly ($P<0.05$) affected animal performance (Table 1). Our data showed a marked decrease in body weight gain with increase in watering intervals. Water intake and body weight gains were positively and strongly related ($r^2 = 0.94$). None of the treatments resulted in weight loss.

Our results demonstrated that sheep with free access to water drink more than those with restricted access. These observations are consistent with those of several previous studies. Sheep on ad libitum watering programme were shown to eat more feed, drink more water and gain more weight than those under intermittent watering. Generally, DMI decreases with increase in lengths of water deprivation. Similar relationships between watering regimes, and water and/or feed consumption have been reported in other kinds/classes of animals, such as buffaloes, steers, lactating dairy cows, sheep and goats. Wethers were observed to drink about 2 kg of water at zero feed intake and approximately 2 kg of water per kilogram of DM eaten.

Table 1: Average water intake, feed intake, feed digestibility and body weight gain (g) by treatment groups

<table>
<thead>
<tr>
<th>Water treatments*</th>
<th>Water intake (Id⁻¹)</th>
<th>Dry matter intake (gd⁻¹)</th>
<th>Digestibility (%)</th>
<th>Weekly Weight gain (Kg)</th>
<th>Total weight gain (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (ad libitum)</td>
<td>2.17±0.05a</td>
<td>619.13±8.19a</td>
<td>73.63±0.51a</td>
<td>0.61±0.20</td>
<td>5.50±0.20a</td>
</tr>
<tr>
<td>T2 (once in 24 hrs)</td>
<td>1.67 ± 0.04b</td>
<td>514.0±7.53b</td>
<td>72.63±0.57a</td>
<td>0.44±0.22</td>
<td>4.00±0.05b</td>
</tr>
<tr>
<td>T3 (once in 48 hrs)</td>
<td>0.98 ± 0.03c</td>
<td>442.75±7.63c</td>
<td>66.13±0.51c</td>
<td>0.29±0.22</td>
<td>2.58±0.22c</td>
</tr>
<tr>
<td>T4 (once in 72 hrs)</td>
<td>0.66 ± 0.01d</td>
<td>407.50±2.79d</td>
<td>63.75±0.92c</td>
<td>0.15±0.07</td>
<td>1.37±0.07d</td>
</tr>
</tbody>
</table>

*Means in the same column with different letter superscripts are significantly ($P<0.05$) different.
It is suggested that water restriction reduces feed intake because a certain amount of water is necessary for normal passage of feed through the digestive tract, and that in the absence of this amount, feed tends to accumulate in the digestive tract, particularly in the rumen23. Adequate water supply, therefore, aids the breakdown of feed, and hence facilitates fermentation and digestion processes. Insufficient water supply to animals has widely been attributed to lowered animal performance in terms of, growth rate, weight gain and milk yield. Our weight gain data closely tallied with others2,3, which demonstrated marked reduction in feed consumption and body weight gain as a result of water deprivation. Some studies have further shown that deprivation of water, even to a moderate extent, resulted in a decrease in feed intake and body weight gain6,17. Our data suggests that free access to water by \textit{Nganda} sheep not only encourages animals to drink more water, but also promotes feed consumption, feed digestibility, and weight gain. For optimum performance, shepherds in arid or semi-arid parts of East African, should endeavour to water their sheep at least, once in 24 hrs.

Acknowledgements

The authors wish to thank the Swedish International Development Cooperation Agency (Sida) for financial support of this study through the Pastoral Information Network Programme (PINEP) at the Department of Range Management, University of Nairobi.

References

Received for publication on 28th April, 2004
Although rabbits require a generous supply of dietary fibre, often provided by feeding roughages, to promote intestinal motility, they digest fibre poorly\(^1\). This in turn affects the digestibility of the total diet. This has been observed as a negative correlation between diet digestibility and crude fibre concentration in which every 1% additional crude fibre beyond a dietary crude fibre of 4% depressed total digestibility by 7%\(^2\). This observation indicates that high levels of roughages in diets for rabbits may be counter productive in terms of feed utilization. On the other hand, low fibre diets cause reduced growth of weaned rabbits\(^3,4\) by prolonging caecal retention time, which consequently reduces feed intake. Recommendations regarding the feeding of roughages to rabbits are vague despite the sensitivity of rabbits to dietary crude fibre, indicated above. A complete diet, incorporating the roughage fraction, is also necessary if appreciable levels of roughage consumption is desired.

The following study was therefore designed to examine the performance of rabbits fed varying concentrate to roughage ratios in complete diets.

Sixteen rabbits aged 4-5 months, weighing on the average 821g were blocked and randomly allocated to four treatments. The treatments consisted of concentrate (maize, soya bean, salt and vitamin premix) and roughage, provided as dried groundnut haulms, in the ratios of 100:0 (C\(_{100}\)); 60:40 (C\(_{60}\)); 40:60 (C\(_{40}\)) and 0:100 (C\(_{0}\)). The groundnut haulms were pounded to reduce particle size and facilitate mixing with the concentrate portion. The ingredients of each dietary treatment were mixed fortnightly while feed samples were collected during each mix of the diets and bulked for subsequent proximate analysis.

The rabbits were initially allowed a 14-day adaptation period on floor litter and fed corn brann with groundnut haulms in a 1:1 ratio being transferred to individual cages made of reinforced wire mesh for data recording. Beneath each cage, a box, open at the top end was placed to collect split feed, which was subsequently added to refused feeds.

Following the 14-day adaptation period, the rabbits were fed *ad libitum* once daily, at 08.00h while refused feeds were weighed daily, separately bulked and dried weekly to determine voluntary feed intake. Water was supplied freely following feeding every morning. At the end of the 12 week growth period, a 7-day before total faecal collection. During the digestibility assesment phase, feeding was done once a day at 08.00h but slightly restricted to approximately *ad libitum* levels in order to reduce errors associated with feed refusals in digestibility calculations, Faecal collection was subsequently done for 7 days. Faeces were weighed, subsampled and dried daily. The daily samples were bulked at the end of the study, milled and
analysed.

Proximate analysis of feed and faecal samples was carried out by normal standard methods\(^5\).

Data were analysed as a randomized block trial with 4 treatments. One of the rabbits fed the all-concentrate diet (C\(_{100}\)) died due to enterotoxemia as shown by post mortem results during the 5th week of the growth phase of the study necessitating calculation of missing values. Individual treatment means were compared using Duncan's multiple range test\(^6\).

Treatments showed a trend of increasing crude fibre (CF) content as the ratio of forage in the diet increased. The CF values were (g/kg): C\(_{100}\), 30; C\(_{60}\), 54; C\(_{40}\), 58; C\(_0\), 175. The corresponding crude protein values (g/kg) were: 229, 238, 218 and 228.

Apart from the single mortality recorded on the C\(_{100}\) treatment, all the rabbits remained in good health throughout the study (Table 1). In absolute terms, daily feed intakes were highest for rabbits fed the C\(_{40}\) diet although comparable values were recorded for the C\(_0\) and C\(_{60}\) diets. The daily feed intake recorded on the C\(_{100}\) diet was significantly (P<0.05) lower than that recorded on C\(_{40}\) but comparable to those recorded on diets C\(_{60}\) and C\(_0\).

The same trend in feed intakes was reflected in final liveweights, total and daily live-weight gains except that rabbits fed the C\(_{40}\) diet gained significantly (P<0.05) higher daily weights than those fed all the other diets. Feed conversion was also best on C\(_{40}\) with rabbits using significantly (P<0.01) less feed/g live-weight on C\(_{40}\) than on all the other diets.

Digestibility obtained on C\(_{100}\) was significantly higher than those recorded on C\(_{40}\) (P<0.01) and C\(_{60}\) (P<0.001). The difference between C\(_0\) and C\(_{60}\) was also significant (P<0.05). The diet metabolizable

<p>| Table 1: Performance of rabbits fed varying ratios of concentrate to forage. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>C(_{100})</th>
<th>C(_{60})</th>
<th>C(_{40})</th>
<th>C(_0)</th>
<th>Se±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial LW (g)</td>
<td>813</td>
<td>835</td>
<td>832</td>
<td>805</td>
<td>27.0(^{ns})</td>
</tr>
<tr>
<td>Final LW (g)</td>
<td>1087(^b)</td>
<td>1235(^ab)</td>
<td>1465(^a)</td>
<td>1181(^ab)</td>
<td>101.0(^*)</td>
</tr>
<tr>
<td>Total LWG (g)</td>
<td>274(^b)</td>
<td>400(^b)</td>
<td>633(^a)</td>
<td>376(^b)</td>
<td>71.9(^*)</td>
</tr>
<tr>
<td>Daily LWG (g)</td>
<td>3.26(^b)</td>
<td>4.70(^b)</td>
<td>7.54(^a)</td>
<td>4.47(^b)</td>
<td>0.82(^*)</td>
</tr>
<tr>
<td>Daily feed intakes (g, DM)</td>
<td>51.4(^b)</td>
<td>52.7(^ab)</td>
<td>61.7(^a)</td>
<td>51.8(^ab)</td>
<td>3.01(^*)</td>
</tr>
<tr>
<td>Feed conversion</td>
<td>15.7(^b)</td>
<td>11.2(^b)</td>
<td>8.18(^a)</td>
<td>11.59(^b)</td>
<td>1.45(^*)</td>
</tr>
<tr>
<td>Feed cost/g LWG (₦)</td>
<td>0.55(^a)</td>
<td>0.28(^b)</td>
<td>0.15(^a)</td>
<td>0.11(^c)</td>
<td>0.027(^*)</td>
</tr>
<tr>
<td>DM digestibility (g/kg)</td>
<td>808(^a)</td>
<td>706(^a)</td>
<td>732(^b)</td>
<td>769(^ab)</td>
<td>13.1(^**)</td>
</tr>
<tr>
<td>Calculated ME (MJ/kg)*</td>
<td>13.9</td>
<td>12.9</td>
<td>14.0</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>Calculated ME intake (MJ)</td>
<td>0.71</td>
<td>0.68</td>
<td>0.86</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\text{§1 = #130}}\)
energy was calculated for each particular diet using a formula that derives from various nutrients obtained in the proximate analysis\(^7\). The values were therefore not analysed but the show, numerically, the highest value for the \(C_{40}\) diet followed by \(C_{100}\), \(C_{60}\) and the lowest values for \(C_0\).

The importance of roughage inclusion in rabbit diets is mainly for the crude fibre (CF) effect on intestinal function. It is however, necessary that dietary CF for rabbits be held within range of 12-16% and should not exceed 14% for growing rabbits aged 4-12 weeks\(^8\). In the present study, the concentrate/roughage diet containing 5.8% CF (\(C_{40}\)) gave the best results in terms of feed intakes and conversion which were subsequently reflected in corresponding live-weight gains. The \(C_{60}\) diet gave the next best results in performance indices. Although the sole roughage diet contained 17.5% CF approximating recommended level (16.0%), it would probably not supply as much energy as the concentrate/roughage diets. Apart from total digestibility in which the sole concentrate diet showed superiority over all the other diets, apparently because of low fibre, the sole concentrate and the sole roughage diets did not result in live-weight gains and feed conversions that were quite comparable with the concentrate/roughage mixtures. It is also important to note in this trial that rabbits fed all-roughage (\(C_0\)) and all-concentrate (\(C_{100}\)) diets respectively used approximately 31 and 92% more feed to gain weight compared to those fed the diet containing 40% concentrate and 60% roughage. Although the sole roughage diet (\(C_0\)) was cheapest in terms of cost per gram live-weight gain, the difference of approximately 70% extra daily gain on \(C_{40}\) compared to \(C_0\) or other roughage/concentrate mixtures places the \(C_{40}\) diet at considerable financial advantage especially when considered over time. These results confirm the importance of roughage in rabbit diets, for optimum performance.

In the present study however, the important consideration is the concentrate/roughage ratio, which gave the best results. This was the 40:60 concentrate/roughage component was offered groundnut hay.

References

Received for publication on 28th April, 2004
SHORT COMMUNICATION

CULTURAL AND MORPHOLOGICAL DESCRIPTION OF NOCARDIA ISOLATED FROM FIELD CASES OF BOVINE SKIN INFECTIONS IN NIGERIA

1M. A. OYEKUNLE and 2A. I. ADETOSOYE

1Department of Animal Production, Obafemi Awolowo University, Ile-Ife, Nigeria
2Department of Veterinary Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria.

Nocardiosis is an infection of man and animals caused by Nocardia, which is soil and water borne. The disease can occur in patients with normal immunity but those with low resistance due to other health problems are at high risk. Nocardiosis is worldwide in distribution and among animals it is most common in cattle and dog and has been reported in various other mammals including birds and fish. Cattle disease occurs principally in the tropical countries. In the susceptible animals respiratory infection accounts for about 55% of cases while the central nervous system and the skin may be involved in 30% and 15% respectively.

Skin nocardiosis is important in Nigeria not only because of the disease it causes, but for its resemblance to dermatohilosis. Many cases of skin nocardiosis were misdiagnosed as dermatohilosis because some veterinary clinicians believed that demonstration of filamentous organisms in smears of skin lesions is enough to diagnose dermatohilosis. This phenomenon has compounded the control of the disease caused by Dermatophilus congolensis in animals. Thus, a knowledge of the morphology of the skin Nocardia from clinical cases can provide useful and rapid clues to its preliminary identification for diagnosis and treatment. A description of the morphological and cultural characteristics of Nocardia isolated from filed cases of bovine skin diseases are presented in this paper.

Ten strains of Nocardia were used in this study and were derived from skin scabs collected from infected White Fulani cattle. The isolation, pure culture derivation and identification of these isolates were previously reported.

The isolates were cultured aerobically according to the Oxoid Manual. The colonial morphology and the growth characteristics in fluid media were assessed according to the criteria described by Parker.

From cultures, films were prepared on microscopic slides and stained with Grams and Ziehl Neelsen stains.

The ten strains were cultured on brain heart infusion agar for 48 hours, subcultured on brain heart infusion broth in bijou bottles and incubated at 37°C for 48 hours.

A drop of the broth culture was placed in the centre of a dry cover slip placed on a flat sheet of paper. A cavity slide with the edge of its depression smeared with liquid paraffin was inverted over the cover slip such that the drop of the culture was in the centre of the slide depression. The slide was pressed down carefully but firmly so that the oil sealed the cover slip in position. The slide was then inverted and examined immedi-
ately for motility under high power objective.

The ability of the organisms to haemolyse blood from various animals species was tested by culturing each isolate on two sets of 10% blood agar plates prepared by adding 10ml blood of each species to 90ml sterile suspension of Columbia blood agar base (Oxoid).

The organisms grew aerobically at 37°C within 3 days on most of the media. Growth occurred also at room temperature but more slowly taking 5-6 days. On brain heart infusion agar, blood agar or nutrient agar colonies were pigmented orange, dry, compact and heaped. They were firmly adherent or deeply embedded in the medium. On nutrient agar, the colonies assumed whitish powdery form 72 hours after incubation. This powdery chalky form was observed on brain heart infusion and blood agar 96 hours after incubation at 37°C and occurred on each medium at room temperature soon after growth.

On Dorset egg medium, growth occurred after 96 hours following incubation at 37°C and spread of growth over the slope was observed in most cases. Colonies on the Dorset egg medium showed at first pinkish pigmentation, which gradually turned orange and then greyish with speckles of white as the culture became old.

In brain heart infusion and nutrient broth cultures, growth of the isolates was poor and without turbidity but with formation of pellicles in the media.

A Gram stain of a fresh culture of the organism from all the media showed Gram-positive thin branching filament. Gram stain from the whitish powdery colony showed cocco bacillary forms which tend to stain Gram negative. The isolates were non-acid fast.

None of the isolates was motile. Varying zones of b-haemolyses were produced with human, cattle, goat and sheep blood with sheep blood giving the widest zone of haemolysis.

We observed from this study that the colonial morphology and cell appearance of the Nocardia were not governed by the media used and the organisms were homogenous with respect to these characteristics.

We observed that a Gram stain of a fresh culture of the organism had predominantly the filamentous form, which could resemble D. congoensis to the unwary. However, the skin Nocardia strain can be identified by its thin filament. Similarly Rhodococcus equi and skin Mycobacterium strain can be confused with fragment of nocardial cells, but differentiation can be done using tap water morphology medium on which Nocardia demonstrates fine-branched aerial hyphae, Mycobacteria demonstrate frost-like substrate hyphae while Rhodococcus grows on the surface of the agar in classical diphtheroid fashion.

It was further observed that the Nocardia strains were not fastidious but contaminants from clinical specimens were the limiting factors in their culturing on ordinary media. The degree of β-haemolysis produced by Nocardia with blood of different animal species may have an epidemiological importance when similar tests with strains from other animals or clinical specimens other than skin are carried out.

It is concluded that the information provided by this study could be an aid to the veterinary clinician in the focus of diagnosis and treatment of animal skin disease caused by actinomycetes group.

References

Received for publication on 30th April, 2004.
SHORT COMMUNICATION

IN-VITRO DISINFECTANT SENSITIVITY TESTS ON BACTERIA ISOLATED FROM COMMERCIAL POULTRY HATCHERIES IN KENYA

E.S. BIZIMENYERA*, P.N. NYAGA2 and J.O. OLOYA3

1Department of Paraclinical Sciences, Faculty Veterinary Science University of Pretoria, Private Bag X04 Onderstepoort 0110 South Africa.

2Veterinary Pathology & Microbiology University of Nairobi P.O. Box 29053, Nairobi, Kenya

3Department, Veterinary Public Health Makerere University, P.O. Box 7062, Kampala, Uganda

The hatchery process is intensive dealing with eggs, chicks, walls, floors, equipment and personnel, and therefore prone to microbial contamination, particularly bacteria. Disinfection, directed to arrest the bacterial build up from hatch to hatch, is paramount to the future of chicks and poults1,2,3.

A wide array of germicides or disinfectants has been used in attempts to control bacterial contamination in hatcheries, but with variable results4,5,6. For proper sanitation, microbial monitoring should precede application of any disinfectant7,8. Since the variety of uses for which germicidal preparations are recommended is astounding, bacteriological analysis for evaluating the effectiveness of germicidal preparations as disinfectants must be undertaken9,10,11. A number of criteria to be fulfilled before an agent is placed on the market as a disinfectant have been recommended12. Reports have been encountered in which disinfectants have been found to be ineffective at the manufacturer’s user-dilution rate13,14,15. For some disinfectants on the market, little is known about their mode of action, long-term effectiveness (stability), as well as toxicity and compatibility patterns. A study was carried out to determine the effectiveness of seven common disinfectants in Kenya for general disinfection in commercial poultry hatcheries.

Three large commercial hatcheries responsible for most commercial chicks hatched in Kenya were involved in the study. Two hundred and forty three (243) bacterial isolates, comprising eight genera from lyophilized stock cultures isolated from three commercial hatcheries8, were used. The genera included in the study were Escherichia, Proteus, Pseudomonas, Bacillus, Staphylococcus, Streptococcus, Klebsiella and Citrobacter.

Isosensitest agar® (Oxoid, Basingstoke, England) was reconstituted, autoclaved and poured onto sterile petri-dishes to a depth of 4 mm. The plates were incubated overnight at 37°C for sterility checks before being used. The prepared media plates were always

*Corresponding author E-mail: ebizimenyera@yahoo.co.uk or s23411415@vetstud.up.ac.za
stored at 4°C when not used immediately, and would be discarded if not used within seven days. Seven disinfectants commonly used in Kenya for general-purpose disinfection were used in this study (Table 1).

A previous method was modified for application in the hatchery environment. The test organisms were streaked onto Blood agar base® and MacConkey agar® (Merck, Darmstadt) to make inoculant cultures and were grown on plates incubated at 37°C. One or two identical colonies of the inoculant cultures were dug out using a sterile scalpel blade and suspended uniformly with shaking in 10ml sterile distilled water to make 10^5 to 10^6 organisms per ml. Fifty microlitre (50ml) of this suspension was pipetted out onto test media and spread over the entire surface of the agar using a sterile cotton swab.

Using a sterile, six-millimeter (6mm) bore punch, wells were punched out uniformly distributed on the agar surface of the seeded plates. The wells were filled with fifty microlitre (50ml) aliquots of the appropriate freshly made dilution of the test disinfectant, starting with the highest dilution. A control well was filled with sterile distilled water.

Table 1: Disinfectants under test for bacterial sensitivity

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Manufacturer</th>
<th>Active ingredient(s)</th>
<th>User-dilution recommended by manufacturer (%)</th>
<th>Highest concentration used in study (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyso®</td>
<td>Alpha chemicals (Kenya)</td>
<td>Cresol and soap</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Pynol-5®</td>
<td>Wellcome (Kenya)</td>
<td>1.8% Santophen I</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Kerol ®</td>
<td>Wellcome (Kenya)</td>
<td>38% neutral tar acids</td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Biodan®</td>
<td>Wellcome (Kenya)</td>
<td>2 - 4% iodine</td>
<td>1.8</td>
<td>6</td>
</tr>
<tr>
<td>Bromosept®</td>
<td>TAD Pharmazeutische s (Germany)</td>
<td>(D.D.A.B)</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Municipal fluid®</td>
<td>Wellcome (Kenya)</td>
<td>38% tar acids</td>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td>Rhino disinfectant®</td>
<td>Kay Pharmaceutical (Kenya)</td>
<td>20% tar acids</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>
Zones of inhibition were measured using a transparent ruler (Multidisk zone reader®, Oxoid) held on the undersurface of the plate. Along with the test bacteria two standard organisms were used as positive controls. These were Oxford strain of *Staphylococcus aureus* (NCTC 6571) and Strain H10407 serotype O78:H19 of *Escherichia coli*.

At the manufacturer's user-dilution for general disinfection, all the disinfectants, except Bromosept® and Lysol®, performed poorly but the effectiveness improved when their concentration was increased (Figure 1).

Although Bromosept®, Lysol® and Biodan® had broadspectrum of activity against test bacteria, *Rhino* disinfectant® and Pynol-5® had effect mainly against Gram positive bacteria. Municipal fluid® was only slightly effective at 10% dilution.

There was evidence of resistance to as many as four disinfectants at the user-dilution rate. Resistance occurred most frequently with *E.coli* (71%), *Citrobacter* (64%) *Proteus* (60%) and *Klebsiella* (60%) and least frequently % with *Bacillus* (0%) and *Staphylococcus* (2%). One isolate of *Proteus mirabilis* resisted even the neat undiluted Municipal fluid®. *Pseudomonas* (50%) and *Streptococcus* (14%) had medium resistance.

The results showed that only two disinfectants (Bromosept® and Lysol®), were effective at the user-dilution rate recommended by the manufacturer. Lack of effectiveness of disinfectants at the manufacturer's user-dilution rate has been cited by various investigators working in different situations. The results of their field applications, however, have left many questions unanswered.

A survey of the hygienic status of Canadian hatcheries, concluded that the effectiveness of disinfectants was only temporary and that unless used wisely, disinfectants were not at all justified. It would appear that after application of the disinfectants according to manufacturers instructions, the operator assumes complete disinfection or de-contamination. However, the organisms, which may be resistant, continue to multiply.

![Fig 1](image_url) % Efficacy of disinfectants at user-dilution vis-avis higher d concentration
The present study revealed that some disinfectants do not have a broad spectrum activity against hatchery bacteria. This calls for microbial sampling of hatchery surfaces regularly before a choice of disinfectant is made. Resistance was most apparent among the gram-negative bacteria particularly the coliforms as reported earlier. As disinfectants are not on prescription and anyone can buy and use them, misuse or mishandling could be blamed for bacterial resistance. Misuse of disinfectants has been cited as one of the risk factors associated with poor chick hatchability.

A number of solutions for managing hatchery hygiene have been proposed ever since the alarm was sounded. It has been proposed that a thorough study be made of the effectiveness of chemicals used for hatchery disinfection. Doubling the disinfectant strength above the manufacturer's user-dilution rate has been recommended. The use of more than one disinfectant in the hope that all the microbes will be knocked out has also been suggested. In the present work effectiveness of some disinfectants was not satisfactory even when the strength was more than doubled. One strain of Proteus mirabilis even resisted the concentrated undiluted municipal fluid.

Acknowledgement

The study was made possible by grants from German Academic Exchange Service (DAAD). Some of the disinfectants used in the study were supplied by Welcome(K) Ltd. Oxoid, Basingstake, England supplied the transparent ruler used in reading the inhibition zones.

References

Received for publication on 25th February, 2004
PART-TIME MASTER OF SCIENCE DEGREE IN TROPICAL ANIMAL HEALTH

The Department of Veterinary Tropical Diseases (DVTD), in the Faculty of Veterinary Medicine, University of Pretoria, South Africa, (which is a partner institution of the African Union Centre for Ticks and Tickborne Diseases (CTTBD), is launching a Web based part-time Master of Science (MSc) degree in Tropical Animal Health and Veterinary Tropical Diseases next year.

The focus of the online modules to be offered include: Laboratory diagnostics, Tsetse and Trypanosomosis, Ticks and Tickborne Diseases, Helminth infections, Ectoparasitic Infections and Protozoal infections, Research methodology and Animal Health Management.

The primary education mode of the degree will be web based supplemented by contact/practical sessions. Depending on the module, contact sessions will either be in Pretoria or Lilongwe, Malawi. Because there may be candidates who do not have access to the Web or because the broad band-width may not be sufficient, especially in instances where the course content includes many images, sound and video, high quality multimedia products (e.g. CD-Roms, videos) will be provided to each candidate.

Entry Requirements: Candidates with a Veterinary, Medical, Animal Science (e.g. Agriculture, Zoology, Entomology) or Microbiology degree or those with a diploma in Animal Health or Microbiology/Parasitology or suitable experience may enroll for the modules.

Certification and recognition: Candidates who successfully complete a module will be awarded a certificate. Credits of a module can also be used towards obtaining a postgraduate degree.

There are limited scholarships available for the first crop of students under this programme. These scholarships will be awarded on a competitive basis. The Centre for Ticks and Tickborne (CTTBD) in conjunction with the DVTD wishes to invite applications from deserving candidates to be considered for the scholarships under this programme.

Application letters accompanied by curriculum vitae and copies of certificates should be reach the undersigned not later than 30th December, 2004:

The Director
Centre for Ticks and Tickborne Diseases
Private Bag A-130
Lilongwe
MALAWI

Additional information can be obtained from the website below:
http://www.up.ac.za/academic/veterinary/depts_vtd.htm
BULLETIN OF ANIMAL HEALTH AND PRODUCTION IN AFRICA

Editor
Dr. J.T. Musiime, B.V.M., Dip. P.V.M., M.Sc., Ph.D.

Assistant Editor
Dr. G.K. Gitau, B.V.M., M.Sc., Ph.D.

Members of Editorial Board
Dr. M.M. Rweyemamu, B.V.Sc., Ph.D., M.R.C.V.S.

Prof. M.J. Mutinga, B.Sc., M.Sc., Ph.D.

Dr. A.J. Musoke, B.V.Sc., M.Sc., Ph.D.

Dr. J.M. Nantulya, MD., Ph.D., M.R.C. Path., FRCP. Path.

Dr. J.M. Ayuya, B.V.M., M.Sc.

Prof. A.L. Abate, B.Sc., Ph.D.

Dr. R.O. Mosi, B.Sc., M.Sc. Ph.D.

Dr. W. G.Z.O. Jura, B.V.M., Ph.D.

Dr. S.J.M. Munyua, B.V.M., B.Sc., MPhl., Ph.D.

Dr. B. Kebkiba, D.V.M. M.Sc., Ph.D.
AFRICAN UNION INTERAFRICAN BUREAU FOR ANIMAL RESOURCES
STAFF LIST

Ag. Director & Chief Animal Production Officer
Dr. J.T. Musiime, B.V.M., Dip. P.VM., M.Sc., Ph.D.

Ag. Documents Officer
C.K. Waiyaki, B.B.A.

PARC Liaison Officer

Translator
M. Ranaivoson
Typesetting, Design and Layout
Vincent Oluoch Ooko
RECOMMANDATIONS AUX AUTEURS

Objet
Le Bulletin de la Santé et de la Production animales en Afrique contient des articles de recherches originales traitant d'activités en matière de santé et de production animales visant à assurer le développement de l'industrie animale et une meilleure utilisation des ressources du bétail en Afrique. Le Bulletin est un périodique trimestriel.

Présentation des articles
Deux exemplaires des articles doivent être adressés à Monsieur le Rédacteur en Chef, Bulletin de la Santé et de la Production Animales en Afrique, Union Africaine/Bureau interafricain des Ressources animales, P.O. Box 30786, 00100 Nairobi, Kenya. E-mail: oau-ibar@africaonline.co.ke.

Un article ne peut être soumis pour publication que s'il n'a pas encore été proposé ailleurs; il sera l'objet de quelques modifications par le Comité de Rédaction.

Genres d'articles publiés dans le Bulletin
- des communications originales.
- des brèves communications.
- analyse des articles proposés par le Rédacteur.
- des éditoriaux.
- le courrier des lecteurs.
- analyse d'ouvrages.
- informations et annonces.

Format des articles
Les manuscrits doivent respecter les conditions suivantes: Le titre doit être concis et ne pas dépasser plus de 15 mots, il est suivi du (des) nom(s) de l'auteur (ou des auteurs) et des établissements où le travail a été effectué, ainsi que de l'adresse pour les correspondances si elle n'est pas la même.

Le résumé ne doit pas dépasser 200 mots. Son texte bref et concis comprendra les principaux résultats et la (les) conclusion(s) de l'étude.

L'introduction expose le but de la recherche.
Le matériel et les méthodes utilisés.
Les résultats présentés brièvement.
Un débat sur l'importance de l'article.
Remerciements éventuels.

Bibliographie: les références bibliographiques doivent être numérotées dans l'ordre, telles qu'elles apparaissent dans le texte. L'identification des références dans le texte se fera à l'aide de numéros (entre parenthèses) et non pas par les noms des auteurs.
La bibliographie doit respecter la présentation suivante:

1. Journal
Le nom de l'auteur (ou des auteurs) suivi des initiales du ou des prénoms, l'année de parution (entre parenthèses), l'abréviation du titre du périodique suivant la "World List of Scientific Periodicals" (soulignée), le numéro de la première page. Le titre de l'article ne doit pas être inclus.

2. Revue
Le nom de l'auteur (ou des auteurs) suivi des initiales du ou des prénoms, l'année de parution (entre parenthèses), le titre exact (souligné), la ville où elle a été publiée, les éditeurs, le numéro de la première page.

3. Rapport annuel
Le nom du pays, l'année faisant l'objet du rapport, puis le nom du service ou de l'organisation, le numéro de la première page.

Si le même auteur est cité plus d'une fois, ses publications seront indiquées dans l'ordre chronologique dans la liste bibliographique et s'il y a plus d'une publication, les lettres "a,b,c," seront ajoutées aussi bien dans la liste bibliographique que dans le texte.

Illustrations
Les tableaux et les titres doivent être en nombre aussi réduit que possible. Un tableau d'une trop grande dimension est difficile à lire même s'il peut être reproduit. Les tableaux et les figures doivent être numérotés dans l'ordre, respectivement Tableau 1, etc., ou Fig. 1 etc. et joints à la fin du texte. Les références aux tableaux et aux figures dans le texte doivent être numérotées et non pas indiquées "tableau ci-dessous" ou figure ci-dessous". Les illustrations en couleurs ne sont reproduites qu'aux frais de l'auteur (ou des auteurs).

Brève communication
Une brève communication signifie que l'article ne peut pas être publié comme une communication normale. Elle ne doit pas dépasser deux pages imprimées ou 1000 mots en incluant deux illustrations au maximum. Elle doit donc respecter les mêmes normes qu'un article habituel, sauf que le résumé et les sous-titres ne sont pas nécessaires.

Épreuves typographiques
Les épreuves typographiques sont envoyées à l'auteur qui en effectue la correction des coquilles et en assure le retour rapide (dans les 3 jours).

Tirés à part
25 tirés à part de chaque article sont fournis gratuitement. Il est possible de commander des tirés à part supplémentaires et les payer au moment des épreuves typographiques. Le coût d'un tiré à part supplémentaire s'élève à 2 $EU.

Abonnements
Le coût de l'abonnement annuel y compris le tarif d'affranchissement (par voie terrestre) et le frais de manutention, est de 50 $EU. L'envoi par avion est possible sur simple demande.

Anciens numéros
Il est également possible de se procurer, sur simple demande, les anciens numéros aux mêmes prix.