Allelic dropouts, null alleles or rare sex detection in clonal organisms: simulations and application to real data sets

Modou Séré, Jacques Kaboré, Vincent Jamonneau, Adrien Marie Gaston Belem, Francisco J. Ayala et Thierry De Meeûs

SERE Modou

32ND MEETING OF INTERNATIONAL SCIENTIFIC COUNCIL FOR TRYPANOSOMIASIS RESEARCH AND CONTROL

Session 16
Introduction

Difficulty of direct observation for Pathogens and their vectors

improvement of DNA amplification techniques during the last few decades

spatio-temporal variability of molecular markers

Inferring of basic ecological Parameters such as: reproduction unit size, dispersal, spatial organization and mode of reproduction of the populations

Microsatellite markers
Primer1 → ATATATATAT
TATATATATA Primer2
Primer1 → ATATATATATATATATATAT Primer2

Population genetics tools

PCR: Polymerase Chain Reaction

30 - 40 cycles of 3 steps:

Step 1: denaturation
1 min at 94 °C

Step 2: annealing
45 seconds at 54 °C
forward and reverse primers

Step 3: extension
2 minutes at 72 °C
only dNTPs
Introduction

F_{IS}: a measure of the deficit of heterozygote/panmixia, resulting from the reproductive system

For a clonal rate (c) of 100% → strongly negative F_{IS} values are expected (Balloux et al., 2003)

A useful criterion for detecting very low rates of recombination in clonal organisms

Allelic dropouts and null alleles

Genetic markers (microsatellite)

Amorce 1 ATATATATATATATATATATA Amorce 2

Amorce 1 ATATATATATATATATATATA Amorce 2

For $99.99 \leq c \leq 95$ → Large variance F_{IS} values are observed between loci
Genetic tools: H_S and F_{IS}

H_S: Genetic diversity

$F_{IS} - \text{obs/analysed data}$: Local heterozygote deficit

For purely clonal population

$$F_{IS} = \frac{H_S - 1}{H_S} = F_{IS} - \text{exp/ clonal reproduction}$$

$$\Delta F_{IS} = F_{IS} - \text{exp} - F_{IS} - \text{obs}$$

$$|\Delta F_{IS}| \leq 0.05 \times |F_{IS - \text{exp}}| = \text{Superimposition des } F_{IS}$$
Methodology

- Criterion for allelic dropouts, null alleles and rare sex detection

![Graph showing the proportion of superimposed points (F_{IS - obs}) and the criterion (F_{IS - exp})]

Proportion of superimposed points (%) => Criterion
Simulations

- Different models of populations
- Variable proportions of allelic dropouts, null alleles and rare sex

Reinterpretation of real datasets

- *T. brucei gambienses* of Guinean foci (Kaboré *et al.* 2011)
- *T. evansi* from Sudan (Salim *et al.*, 2011)
Results

Comparison of allelic dropouts, null allele and rare sex effects
Reinterpretation: *T. brucei gambienses* of Guinean foci (Kaboré *et al.* 2011)
Results

Reinterpretation: *T. evansi* from Sudan (Salim *et al.*, 2011)
✓ The method based on the relationship between H_s and F_{IS} under the hypothesis of clonal reproduction is useful.

✓ It is valid for less than 50% of poorly amplified alleles.

✓ It is not a palliative but represent a useful decision criterion for regenotyping problematic data.
Thank you for your attention.